Learn More
Heterogeneous distributed computing systems often must operate in an environment where system parameters are subject to uncertainty. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. We present a methodology for quantifying the robustness of resource allocations(More)
—We model an oversubscribed heterogeneous computing system where tasks arrive dynamically and a scheduler maps the tasks to machines for execution. The environment and workloads are based on those being investigated by the Extreme Scale Systems Center at Oak Ridge National Laboratory. Utility functions that are designed based on specifications from the(More)
This work considers the satellite data processing portion of a space-based weather monitoring system. It uses a heterogeneous distributed processing platform. There is uncertainty in the arrival time of new data sets to be processed, and resource allocation must be robust with respect to this uncertainty. The tasks to be executed by the platform are(More)
Energy-efficient resource allocation within clusters and data centers is important because of the growing cost of energy. We study the problem of energy-constrained dynamic allocation of tasks to a heterogeneous cluster computing environment. Our goal is to complete as many tasks by their individual deadlines and within the system energy constraint as(More)
This study considers a heterogeneous computing system and corresponding workload being investigated by the Extreme Scale Systems Center (ESSC) at Oak Ridge National Laboratory (ORNL). The ESSC is part of a collaborative effort between the Department of Energy (DOE) and the Department of Defense (DoD) to deliver research, tools, software, and technologies(More)
Heterogeneous computing (HC) is the coordinated use of different types of machines, networks, and interfaces to maximize the combined performance and/or cost effectiveness of the system. Heuristics for allocating resources in an HC system have different optimization criteria. A common optimization criterion is to minimize the completion time of the last to(More)
In a heterogeneous environment, uncertainty in system parameters may cause performance features to degrade considerably. It then becomes necessary to design a system that is robust. Robustness can be defined as the degree to which a system can function in the presence of inputs different from those assumed. In this research, we focus on the design of robust(More)
The environment considered in this research is a massive multiplayer online gaming (MMOG) environment. Each user controls an avatar (an image that represents and is manipulated by a user) in a virtual world and interacts with other users. An important aspect of MMOG is maintaining a fair environment among users (i.e., not give an unfair advantage to users(More)
Energy-efficient resource allocation within clusters and data centers is important because of the growing cost of energy. We study the problem of energy-constrained dynamic allocation of tasks to a heterogeneous cluster computing environment. Our goal is to complete as many tasks by their individual deadlines and within the system energy constraint as(More)
Heterogeneous computing (HC) is the coordinated use of different types of machines, and networks to process a diverse workload in a manner that will maximize the combined performance and/or cost effectiveness of the system. Heuristics for allocating resources in an HC system are based on some optimization criterion. A common optimization criterion is to(More)