Learn More
The characterization of the topological architecture of complex networks underlying the structural and functional organization of the brain is a basic challenge in neuroscience. However, direct evidence for anatomical connectivity networks in the human brain remains scarce. Here, we utilized diffusion tensor imaging deterministic tractography to construct a(More)
Reading is a complex cognitive skill that requires the coordination of multiple brain regions. Although functional neuroimaging studies highlight the cortical brain regions associated with a specific cognitive task like reading, they do not directly address the underlying neural connections necessary for efficient performance of this task. Adults with(More)
BACKGROUND Although epilepsy is considered a grey-matter disorder, changes in the underlying brain connectivity have important implications in seizure generation and propagation. Abnormalities in the temporal and extratemporal white matter of patients with temporal-lobe epilepsy (TLE) and mesial temporal sclerosis (MTS) have previously been identified.(More)
PURPOSE Recent studies have demonstrated bilateral white matter abnormalities in temporal lobe epilepsy (TLE) patients with unilateral mesial temporal sclerosis (MTS). The purpose of this project was to determine whether abnormalities of water diffusion are seen in extratemporal white matter of patients with TLE and pathologically confirmed MTS and to(More)
PURPOSE Bilateral white matter diffusion tensor imaging (DTI) abnormalities have been reported in patients with temporal lobe epilepsy (TLE) and unilateral mesial temporal sclerosis (MTS), but it is unknown whether these are functional or structural changes. We performed a longitudinal study in patients with unilateral MTS who were seizure-free for 1 year(More)
Diffusion tensor magnetic resonance imaging can acquire quantitative information on the microstructural integrity of white matter structures and depict brain connectivity in vivo based on the behavior of water diffusion. Diffusion tensor imaging-derived tractography has been used for virtual dissection of the fornix and cingulum in healthy subjects, but not(More)
BACKGROUND AND PURPOSE The limbic system, relevant to memory and emotion, is an interesting subject of study in healthy and diseased individuals. It consists of a network of gray matter structures interconnected by white matter fibers. Although gray matter components of this system have been studied by using MR imaging, the connecting fibers have not been(More)
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) was used as a noninvasive method to evaluate the anatomy of the corticospinal tract (CST) and the pattern of its degeneration in amyotrophic lateral sclerosis (ALS). METHODS Fourteen patients with ALS and 15 healthy controls underwent DTI. Parameters reflecting coherence of diffusion (fractional(More)
Axonal degeneration of white matter fibers is a key consequence of neuronal or axonal injury. It is characterized by a series of time-related events with initial axonal membrane collapse followed by myelin degradation being its major hallmarks. Standard imaging cannot differentiate these phenomena, which would be useful for clinical investigations of(More)
While diffusion tensor imaging (DTI) has been extensively used to infer micro-structural characteristics of cerebral white matter in human conditions, correlations between human in vivo DTI and histology have not been performed. Temporal lobe epilepsy (TLE) patients with mesial temporal sclerosis (MTS) have abnormal DTI parameters of the fimbria-fornix(More)