Learn More
Bacteria communicate through the production of diffusible signal molecules termed autoinducers. The molecules are produced at basal levels and accumulate during growth. Once a critical concentration has been reached, autoinducers can activate or repress a number of target genes. Because the control of gene expression by autoinducers is(More)
The Vibrio fischeri quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL) activates expression of the seven-gene luminescence operon. We used microarrays to unveil 18 additional 3OC6-HSL-controlled genes, 3 of which had been identified by other means previously. We show most of these genes are regulated by the 3OC6-HSL-responsive(More)
Bacteria have been long considered primitive organisms, with a lifestyle focused on the survival and propagation of single cells. However, in the past few decades it became obvious that bacteria can display sophisticated group behaviors. For instance, bacteria can communicate amongst themselves and with their hosts, by producing, sensing, and responding to(More)
The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar(More)
The importance of the mammalian intestinal microbiota to human health has been intensely studied over the past few years. It is now clear that the interactions between human hosts and their associated microbial communities need to be characterized in molecular detail if we are to truly understand human physiology. Additionally, the study of such(More)
The human microbiome, especially in the intestinal tract has received increased attention in the past few years due to its importance in numerous biological processes. Recent advances in DNA sequenc-ing technology and analysis now allow us to better determine global differences in the composition of the gut microbial population, and ask questions about its(More)
During the colonization of hosts, bacterial pathogens are presented with many challenges that must be overcome for colonization to occur successfully. This requires the bacterial sensing of the surroundings and adaptation to the conditions encountered. One of the major impediments to the pathogen colonization of the mammalian gastrointestinal tract is the(More)
Vibrio fischeri quorum sensing involves the LuxI and LuxR proteins. The LuxI protein generates the quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL), and LuxR is a signal-responsive transcriptional regulator which activates the luminescence (lux) genes and 17 other V. fischeri genes. For activation of the lux genes, LuxR binds to a(More)
In Vibrio parahaemolyticus, scrC participates in controlling the decision to be a highly mobile swarmer cell or a more adhesive, biofilm-proficient cell type. scrC mutants display decreased swarming motility over surfaces and enhanced capsular polysaccharide production. ScrC is a cytoplasmic membrane protein that contains both GGDEF and EAL conserved(More)
The intestinal metabolome is a rich collection of molecules with specialized functions and important physiological effects. Many insults such as enteric infection and microbiota disruption by antibiotics can have profound effects in the metabolic homeostasis of the gut. We have recently shown that Salmonella infection and antibiotic treatment of mice(More)