Luis Alfonso Martínez-Cruz

Learn More
This research analyzes some aspects of the relationship between gene expression, gene function, and gene annotation. Many recent studies are implicitly based on the assumption that gene products that are biologically and functionally related would maintain this similarity both in their expression profiles as well as in their Gene Ontology (GO) annotation.(More)
In mammals, methionine metabolism occurs mainly in the liver via methionine adenosyltransferase-catalyzed conversion to S-adenosylmethionine. Of the two genes that encode methionine adenosyltransferase(MAT1Aand MAT2A), MAT1A is mainly expressed in adult liver whereas MAT2A is expressed in all extrahepatic tissues. Mice lacking MAT1A have reduced hepatic(More)
The aim of the present study was to gain insight into the pathophysiology of obesity by comparing the pattern of gene expression of omental adipose tissue of obese and lean volunteers using DNA microarrays. Omental adipose tissue biopsies were obtained by laparoscopic surgery from six male patients (44.2+/-6.3 yr). RNA was extracted and pooled for the obese(More)
Dietary methionine is mainly metabolized in the liver where it is converted into S-adenosylmethionine (AdoMet), the main biologic methyl donor. This reaction is catalyzed by methionine adenosyltransferase I/III (MAT I/III), the product of MAT1A gene, which is exclusively expressed in this organ. It was first observed that serum methionine levels were(More)
Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved(More)
Cystathionine β-synthase (CBS) controls the flux of sulfur from methionine to cysteine, a precursor of glutathione, taurine, and H2S. CBS condenses serine and homocysteine to cystathionine with the help of three cofactors, heme, pyridoxal-5'-phosphate, and S-adenosyl-l-methionine. Inherited deficiency of CBS activity causes homocystinuria, the most frequent(More)
The glycosyl hydrolases are an important group of enzymes that are responsible for cleaving a range of biologically significant carbohydrate compounds. Structural information on these enzymes has provided useful information on their molecular basis for the functional variations, while the characterization of the structural features that account for the high(More)
Cystathionine beta-synthase (CBS) domains are small motifs that are present in proteins with completely different functions. Several genetic diseases in humans have been associated with mutations in their sequence, which has made them promising targets for rational drug design. The protein MJ0100 from Methanocaldococcus jannaschii includes a DUF39 domain of(More)
Combined injections into experimental tumor nodules of adenovirus encoding IL-12 and certain chemokines are capable to induce immune-mediated complete regressions. In this study, we found that the combination of two adenoviruses, one encoding IL-12 and other MIP3alpha (AdCMVIL-12+AdCMVMIP3alpha) was very successful in treating CT-26-derived colon(More)
Cystathionine β-synthase (CBS) domains or CBS motifs are conserved structural domains that are present in thousands of non functionally-related proteins from all kingdoms of life. Their importance is underlined by the range of hereditary diseases associated with mutations in their amino acid sequence. CBS motifs associate in pairs referred to as Bateman(More)