Luis Alberto Cordova

Learn More
Bone formation and remodeling are influenced by the inflammatory state of the local microenvironment. In this regard, macrophages are postulated to play a crucial role in modulating osteogenesis. However, the differential effects of macrophage subsets and their plasticity on bone formation are currently unknown. Polarized primary murine macrophages and(More)
Receptor activator of nuclear factor kappa-B (RANK) and RANK-ligand are relevant targets for the treatment of polyethylene particle-induced osteolysis. This study assessed the local administration of siRNA, targeting both human RANK and mouse Rank transcripts in a mouse model. Four groups of mice were implanted with polyethylene (PE) particles in the(More)
The reconstitution of lost bone is a subject that is germane to many orthopedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral(More)
Aseptic loosening as a result of wear debris is considered to be the main cause of long-term implant failure in orthopaedic surgery and improved biomaterials for bearing surfaces decreases significantly the release of micrometric wear particles. Increasingly, in-depth knowledge of osteoimmunology highlights the role of nanoparticles and ions released from(More)
Macrophages are an important component of the inflammatory cascade by initiating and modulating the processes leading to tissue regeneration and bone healing. Depending on the local environment, macrophages can be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes. In order to assess the effects of aging on macrophage function, bone(More)
UNLABELLED Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the(More)
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing(More)
Wear particle-induced osteolysis limits the long-term survivorship of total joint replacement (TJR). Monocyte/macrophages are the key cells of this adverse reaction. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is the most important chemokine regulating trafficking of monocyte/macrophages in particle-induced inflammation. 7ND recombinant protein is a(More)
Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently(More)
Bone fractures are among the most common orthopaedic problems that affect individuals of all ages. Immediately after injury, activated macrophages dynamically contribute to and regulate an acute inflammatory response that involves other cells at the injury site, including mesenchymal stem cells (MSCs). These macrophages and MSCs work in concert to modulate(More)