Learn More
We have developed an improved method for preparing cell aggregates for in vitro chondrogenesis studies. This method is a modification of a previously developed conical tube-based culture system that replaces the original 15-mL polypropylene tubes with 96-well plates. These modifications allow a high-throughput approach to chondrogenic cultures, which(More)
Amniotic fluid stem (AFS) cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC) show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions(More)
INTRODUCTION Human multipotent mesenchymal stem cell (MSC) therapies are being tested clinically for a variety of disorders, including Crohn's disease, multiple sclerosis, graft-versus-host disease, type 1 diabetes, bone fractures, and cartilage defects. However, despite the remarkable clinical advancements in this field, most applications still use(More)
We hypothesized that the mechanically active environment present in rotating bioreactors mediates the effectiveness of three-dimensional (3D) scaffolds for cartilage tissue engineering. Cartilaginous constructs were engineered by using bovine calf chondrocytes in conjunction with two scaffold materials (SM) (benzylated hyaluronan and polyglycolic acid);(More)
Human mesenchymal stem cells (hMSCs) are being considered for clinical trials of multiple sclerosis (MS). We examined the effects of adult bone marrow-derived hMSCs on responses of primary human Th1, Th17, and Th1/17 double-expressing T-cell subsets, all implicated in MS. As expected, soluble products from hMSCs inhibited Th1 responses; however, Th17(More)
Allogeneic hematopoietic stem cell transplantation is the main curative therapy for many hematologic malignancies. Its potential relies on graft-versus-tumor effects which associate with graft-versus-host disease. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties that make them attractive therapeutic alternatives. We evaluated the in(More)
Mesenchymal stem cells (MSCs) can differentiate into osteogenic, adipogenic, chondrogenic, myocardial, or neural lineages when exposed to specific stimuli, making them attractive for tissue repair and regeneration. We have used reporter gene-based imaging technology to track MSC transplantation or implantation in vivo. However, the effects of lentiviral(More)
The specialty of craniofacial surgery is broad and includes trauma, esthetics, reconstruction of congenital deformities, and regeneration of tissues. Moreover, craniofacial surgery deals with a diverse range of tissues including both 'soft' and 'hard' tissues. Technological advances in materials and biological sciences and improved surgical techniques have(More)
This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment(®) Bone Graft (Augment). Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included(More)
Bone-marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only(More)
  • 1