Learn More
We present a method for sensor-based exploration of unknown environments by a mobile robot. The method is based on the randomized incremental generation of a data structure called sensor-based random tree (SRT), which represents a roadmap of the explored area with an associated safe region. Different exploration strategies may be obtained by instantiating(More)
We present a cooperative exploration strategy for mobile robots. The method is based on the randomized incremental generation of a collection of data structures called sensor-based random trees, each representing a roadmap of an explored area with an associated safe region. Decentralized cooperation and coordination mechanisms are introduced so as to(More)
A novel vision-based scheme is presented for driving a nonholonomic mobile robot to intercept a moving target. The proposed method has a two-level structure. On the lower level, the pan–tilt platform carrying the on-board camera is controlled so as to keep the target as close as possible to the center of the image plane. On the higher level, the relative(More)
We present an integrated exploration strategy for mobile robots. The method is based on the randomized incremental generation of a data structure called sensor-based random tree (SRT), which represents a roadmap of the explored area with an associated safe region. A continuous localization procedure based on natural features of the safe region is integrated(More)
—We present a decentralized cooperative exploration strategy for mobile robots. A roadmap of the explored area, with the associate safe region, is built in the form of a compact data structure, called Sensor-based Random Graph. This is incremen-tally expanded by the robots by using a randomized local planner which automatically realizes a trade-off between(More)
—We present a decentralized cooperative exploration strategy for a team of mobile robots equipped with range finders. A roadmap of the explored area, with the associate safe region, is built in the form of a Sensor-based Random Graph (SRG). This is expanded by the robots by using a randomized local planner which automatically realizes a trade-off between(More)
We present a frontier-based modification of the SRT (Sensor-based Random Tree) method, a previously proposed probabilistic strategy for sensor-based exploration of unknown environments by a mobile robot. The idea is to improve the efficiency of the method by biasing the randomized generation of configurations towards unexplored areas. Effective(More)
This paper considers a robot that moves in the plane and is only able to sense the cyclic order of landmarks with respect to its current position. No metric information is available regarding the robot or landmark positions; moreover, the robot does not have a compass or odometers (e.g., coordinates). We carefully study the information space of the robot,(More)
We present a vision-based scheme for driving a nonholonomic mobile robot to intercept a moving target. Our method relies on a two-level approach. On the lower level, the pan-tilt platform which carries the on-board camera is controlled so as to keep the target at the center of the image plane. On the higher level, the robot operates under the assumption(More)
— In recent research, autonomous vehicle navigation has been often done by processing visual information. This approach is useful in urban environments, where tall buildings can disturb satellite receiving and GPS localization, while offering numerous and useful visual features. Our vehicle uses a monocular camera, and the path is represented as a series of(More)