Luigi Francesco Agnati

Learn More
Antagonistic and reciprocal interactions are known to exist between adenosine and dopamine receptors in the striatum. In the present study, double immunofluorescence experiments with confocal laser microscopy showed a high degree of colocalization of adenosine A(2A) receptors (A(2A)R) and dopamine D(2) receptors (D(2)R) in cell membranes of SH-SY5Y human(More)
There is evidence for strong functional antagonistic interactions between adenosine A2A receptors (A2ARs) and dopamine D2 receptors (D2Rs). Although a close physical interaction between both receptors has recently been shown using co-immunoprecipitation and co-localization assays, the existence of a A2AR-D2R protein-protein interaction still had to be(More)
Cells can exchange information not only by means of chemical and/or electrical signals, but also via microvesicles released into the intercellular space. The present paper, for the first time, provides evidence that Glioblastoma and Astrocyte cells release microvesicles, which carry mitochondrial DNA (mtDNA). These microvesicles have been characterised as(More)
A monoclonal antibody against the rat liver glucocorticoid receptor was used in combination with rabbit antibodies against tyrosine hydroxylase, phenylethanolamine N-methyltransferase, and 5-hydroxytryptamine to demonstrate strong glucocorticoid receptor immunoreactivity in large numbers of central monoaminergic nerve cell bodies of the male rat. The(More)
The possible molecular basis for the previously described antagonistic interactions between adenosine A(1) receptors (A(1)R) and dopamine D(1) receptors (D(1)R) in the brain have been studied in mouse fibroblast Ltk(-) cells cotransfected with human A(1)R and D(1)R cDNAs or with human A(1)R and dopamine D(2) receptor (long-form) (D(2)R) cDNAs and in(More)
In vitro results show the ability of the CB(1) receptor agonist CP 55,940 to reduce the affinity of D(2) receptor agonist binding sites in both the dorsal and ventral striatum including the nucleus accumbens shell. This antagonistic modulation of D(2) receptor agonist affinity was found to remain and even be enhanced after G-protein activation by Gpp(NH)p.(More)
Recently evidence has been presented that adenosine A2A and dopamine D2 receptors form functional heteromeric receptor complexes as demonstrated in human neuroblastoma cells and mouse fibroblast Ltk- cells. These A2A/D2 heteromeric receptor complexes undergo coaggregation, cointernalization, and codesensitization on D2 or A2A receptor agonist treatments and(More)
Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it(More)
By means of semiquantitative immunocytochemistry and quantitative receptor autoradiography a correlation analysis has been performed on the pre- and post-synaptic features of enkephalin and beta-endorphin immunoreactive neuron systems of the 3- and 24-month-old male rat. A parallel disappearance of enkephalin- and beta-endorphin-like immunoreactivity and of(More)
During the past two decades several revisions of the concepts underlying interneuronal communication in the central nervous system have been advanced. We propose here to classify communicational phenomena between cells of the central neural tissue under two general frames: "wiring" and "volume" transmission. "Wiring" transmission is defined as intercellular(More)