Ludovico Silvestri

Learn More
Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus(More)
Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire(More)
MOTIVATION Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. RESULTS We introduce a fast and scalable algorithm for fully automated cell(More)
Understanding the architecture of mammalian brain at single-cell resolution is one of the key issues of neuroscience. However, mapping neuronal soma and projections throughout the whole brain is still challenging for imaging and data management technologies. Indeed, macroscopic volumes need to be reconstructed with high resolution and contrast in a(More)
We characterize the spectral properties of weak turbulence in a liquid crystal sample driven by an external electric field, as a function of the applied voltage, and we find a 1/f noise spectrum S(f) proportional, variant1/f;{eta} within the whole range 0<eta<2. We theoretically explore the hypothesis that the system complexity is driven by non-Poisson(More)
One of the most fascinating challenges in neuroscience is the reconstruction of the connectivity map of the brain. Recent years have seen a rapid expansion in the field of connectomics, whose aim is to trace this map and understand its relationship with neural computation. Many different approaches, ranging from electron and optical microscopy to magnetic(More)
Tunneling induced quantum interference experienced by an incident probe in asymmetric double quantum wells can easily be modulated by means of an external control light beam. This phenomenon, which is here examined within the dressed-state picture, can be exploited to devise a novel all-optical ultrafast switch. For a suitably designed semiconductor(More)
Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the(More)
Chemical clearing of fixed tissues is becoming a key instrument for the three-dimensional reconstruction of macroscopic tissue portions, including entire organs. Indeed, the growing interest in this field has both triggered and been stimulated by recent advances in high-throughput microscopy and data analysis methods, which allowed imaging and management of(More)