Ludovico Silvestri

Learn More
Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus(More)
Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire(More)
Understanding the architecture of mammalian brain at single-cell resolution is one of the key issues of neuroscience. However, mapping neuronal soma and projections throughout the whole brain is still challenging for imaging and data management technologies. Indeed, macroscopic volumes need to be reconstructed with high resolution and contrast in a(More)
One of the most fascinating challenges in neuroscience is the reconstruction of the connectivity map of the brain. Recent years have seen a rapid expansion in the field of connectomics, whose aim is to trace this map and understand its relationship with neural computation. Many different approaches, ranging from electron and optical microscopy to magnetic(More)
MOTIVATION Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. RESULTS We introduce a fast and scalable algorithm for fully automated cell(More)
Information processing inside the central nervous system takes place on multiple scales in both space and time. A single imaging technique can reveal only a small part of this complex machinery. To obtain a more comprehensive view of brain functionality, complementary approaches should be combined into a correlative framework. Here, we describe a method to(More)
Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the(More)
Thanks to their flexibility, optical techniques could be the key to explore anatomy, plasticity, and functionality of the cerebellum. As an example, an in vivo analysis of the dynamic remodeling of cerebellar axons by nonlinear microscopy can provide fundamental insights of the mechanism that promotes neuronal regeneration. Several studies showed that(More)
In this paper we mutually compare advanced modeling approaches for the determination of the drain current in nanoscale MOSFETs. Transport models range from Drift-Diffusion to direct solution of the Boltzmann Transport equation with the Monte-Carlo methods. Template devices representative of 22nm Double-Gate and 32nm FDSOI transistors were used as a common(More)