Ludovic Goux

Learn More
The basic unit of information in filamentary-based resistive switching memories is physically stored in a conductive filament. Therefore, the overall performance of the device is indissolubly related to the properties of such filament. In this Letter, we report for the first time on the three-dimensional (3D) observation of the shape of the conductive(More)
In this paper we review a dynamic device model for filamentary RRAM in HfO-based dielectrics. We summarize its transient modeling features and its statistical properties. The model explains with satisfactory quantitative resolution all main features of the RRAM switching, not just the voltage, time and temperature dependence, but also statistical(More)
In the recent past, filamentary-based resistive switching devices have emerged as predominant candidates for future non-volatile memory storage. Most of the striking characteristics of these devices are still limited by the high power consumption and poor understanding of the intimate resistive switching mechanism. In this study, we present an atomic scale(More)
Filamentary-based oxide resistive memory is considered as a disruptive technology for nonvolatile data storage and reconfigurable logic. Currently accepted models explain the resistive switching in these devices through the presence/absence of a conductive filament (CF) that is described as a reversible nanosized valence-change in an oxide material. During(More)
We review our recent work on modeling of low current filamentary switching in amorphous HfO<sub>2</sub> RRAM. The conduction is controlled by the width of the constriction, determining the electron transmission. The set and reset processes are modeled as a dynamic flow between two oxygen vacancy reservoirs connected by a narrow constriction. Reset is(More)
We report the improved thermal stability of carbon alloyed Cu0.6Te0.4 for resistive memory applications. Copper-tellurium-based memory cells show enhanced switching behavior, but the complex sequence of phase transformations upon annealing is disadvantageous for integration in a device. We show that addition of about 40 at % carbon to the Cu-telluride layer(More)
A great improvement in valence change memory performance has been recently achieved by adding another metallic layer to the simple metal-insulator-metal (MIM) structure. This metal layer is often referred to as oxygen exchange layer (OEL) and is introduced between one of the electrodes and the oxide. The OEL is believed to induce a distributed reservoir of(More)
The formation and rupture of conductive filaments (CFs) inside an insulating medium is used as hardware encoding of the state of a memory cell ("1" - "0") in filamentary-based conductive bridging memories. Currently accepted models explain the filament erase (reset) as the subtraction of conductive metal atoms from the CF; however, they do not fully account(More)