#### Filter Results:

#### Publication Year

2002

2014

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

We numerically produce fully amorphous assemblies of frictionless spheres in three dimensions and study the jamming transition these packings undergo at large volume fractions. We specify four protocols yielding a critical value for the jamming volume fraction which is sharply defined in the limit of large system size, but is different for each protocol.… (More)

- L Berthier, G Biroli, J-P Bouchaud, L Cipelletti, D El Masri, D L'Hôte +2 others
- Science
- 2005

Understanding glass formation is a challenge, because the existence of a true glass state, distinct from liquid and solid, remains elusive: Glasses are liquids that have become too viscous to flow. An old idea, as yet unproven experimentally, is that the dynamics becomes sluggish as the glass transition approaches, because increasingly larger regions of the… (More)

We examine the structure of the distribution of single particle displacements (van Hove function) in a broad class of materials close to glass and jamming transitions. In a wide time window comprising structural relaxation, van Hove functions reflect the coexistence of slow and fast particles (dynamic heterogeneity). The tails of the distributions exhibit… (More)

– The interplay between self-diffusion and excitation lines in space-time was recently studied in kinetically constrained models to explain the breakdown of the Stokes-Einstein law in supercooled liquids. Here, we further examine this interplay and its manifestation in incoherent scattering functions. In particular, we establish a dynamic length scale below… (More)

We study theoretically and numerically a family of multipoint dynamic susceptibilities that quantify the strength and characteristic length scales of dynamic heterogeneities in glass-forming materials. We use general theoretical arguments (fluctuation-dissipation relations and symmetries of relevant dynamical field theories) to relate the sensitivity of… (More)

We consider the dynamics of spin facilitated models of glasses in the non-equilibrium aging regime following a sudden quench from high to low temperatures. We briefly review known results obtained for the broad class of kinetically constrained models, and then present new results for the behaviour of the one-spin facilitated Fredrickson-Andersen and East… (More)

We use recently introduced three-point dynamic susceptibilities to obtain an experimental determination of the temperature evolution of the number of molecules Ncorr that are dynamically correlated during the structural relaxation of supercooled liquids. We first discuss in detail the physical content of three-point functions that relate the sensitivity of… (More)

We study in detail the predictions of various theoretical approaches, in particular, mode-coupling theory (MCT) and kinetically constrained models (KCMs), concerning the time, temperature, and wave vector dependence of multipoint correlation functions that quantify the strength of both induced and spontaneous dynamical fluctuations. We also discuss the… (More)

We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We… (More)