Ludmila S. Ryazanova

Learn More
We propose a generalized mathematical model for a small neural-glial ensemble. The model incorporates subunits of the tripartite synapse that includes a presynaptic neuron, the synaptic terminal itself, a postsynaptic neuron, and a glial cell. The glial cell is assumed to be activated via two different pathways: (i) the fast increase of intercellular [K(+)](More)
The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways of the glial cell activation: (1) via IP(3) production and Ca(2 +)(More)
The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we show that potassium induced depolarization underlies the(More)
Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this resource-mediated coupling is found to be responsible for the(More)
The paper reports on the study of radionuclide and elemental composition of water, bottom sediment and soil samples collected at the border areas of the following transboundary rivers in Kazakhstan: Chagan, Ural, Ilek, Tobol, Ayat, Irtysh, Emel, Ili, Tekes, Shu, Karabalta, Talas and Syrdarya. The employed analyses include the following methods: instrumental(More)
  • 1