Ludmila N. Komarova

Learn More
A mathematical model of DNA strand breaks postirradiation repair and the methodology allowing to differentiate the mechanism of inhibition of DNA strand breaks recovery after combined actions of ionizing radiation and hyperthermia have been described in this paper. Using this model and the results published by other authors for DNA strand breaks of Ehrlich(More)
In experiments with wild-type diploid yeast cells of Saccharomyces cerevisiae, the synergistic lethal action of a simultaneous application of ultraviolet (UV) light (wavelength, 254 nm) and mild heat (45-57.5 degrees C) was studied. It was shown that, at any fixed UV light intensity, the synergistic effect occurred within the given temperature interval. The(More)
The potential ability of various physical or chemical agents to enhance their effect when they are applied simultaneously with each other is well-known. The purpose of this study was to adjust a simple mathematical model to describe, optimize and predict a synergistic interaction between fluoride and xylitol on acid production by mutans streptococci. The(More)
The results of experimental research of diploid yeasts cells survival after simultaneous action of hyperthermia and ionizing radiation (60Co) have been described. It was shown that the cell ability to liquid holding recovery decreased with an increase in the temperature, at which the exposure was carried out. due to the increase in the irreversible(More)
Quantitative regularities of recovery of wild-type diploid yeast cells irradiated with gamma-rays (60Co) simultaneously with exposure to high temperatures were studied. It was shown that in conditions of such a combined action the constant of recovery did not depend on the temperature at which the irradiation was carried out. However, with an increase of(More)
Quantitative regularities of dark recovery of wild-type diploid yeast cells of Saccharomyces cerevisiae simultaneously treated with UV-light (254 nm) and high temperatures (53-56 degrees C) were studied. Under this combined action, the constant of recovery, which defines the probability of elimination of the UV-radiation induced damage per unit of time, did(More)
The significance of the UV fluence rate for the synergistic interaction of UV light (254 nm) and heat was demonstrated for the frequency of mitotic recombination in a wild-type diploid yeast of Saccharomyces cerevisiae (strain T1) and for cell inactivation of two wild-type diploid yeast of S. cerevisiae (strains T1, XS800). It was shown for mitotic(More)
The inactivation of diploid yeast cells of Saccharomyces cerevisiae was studied after simultaneous treatment of ultrasound and hyperthermia. The existence of a definite temperature range was proved within which a synergistic interaction was determined. An optimal temperature that maximized the synergy could be identified. A simple mathematical model of(More)
The results of experimental investigations of survival of diploid yeast cells Saccharomyces cerevisiae (strain XS800) after simultaneous exposure to UV-radiation (254 nm) and hyperthermia (53-57 degrees C) have been described. It was shown that the portion of cells capable of recovery in innutrient medium after the action of these agents decreased with the(More)
For mathematical description of synergetic interaction of high environmental temperature and microwaves for animal heating, a simple semi-empirical model was used. In the model, it is suggested that the mechanism of synergistic interaction is caused by the additional effective damages resulting in more higher body temperature increment comparing with that(More)