Luděk Štěpánek

Learn More
Much like other microorganisms, wild yeasts preferentially form surface-associated communities, such as biofilms and colonies, that are well protected against hostile environments and, when growing as pathogens, against the host immune system. However, the molecular mechanisms underlying the spatiotemporal development and environmental resistance of(More)
Nutrient sensing and metabolic reprogramming are crucial for metazoan cell aging and tumor growth. Here, we identify metabolic and regulatory parallels between a layered, multicellular yeast colony and a tumor-affected organism. During development, a yeast colony stratifies into U and L cells occupying the upper and lower colony regions, respectively. U(More)
The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We(More)
Molecular motors propel cellular components at velocities up to microns per second with nanometer precision. Imaging techniques combining high temporal and spatial resolution are therefore indispensable to understand the cellular mechanics at the molecular level. For example, intraflagellar transport (IFT) trains constantly shuttle ciliary components(More)
  • 1