Lucy Marzban

Learn More
AIMS/HYPOTHESIS Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), is associated with beta cell death in type 2 diabetes as well as in cultured and transplanted human islets. Impaired prohIAPP processing due to beta cell dysfunction is implicated in hIAPP aggregation. We examined whether the glucagon-like peptide-1 receptor(More)
Islet amyloid, formed by aggregation of islet amyloid polypeptide (IAPP; amylin), is a pathological characteristic of the pancreas in type 2 diabetes and may contribute to the progressive loss of beta-cells in this disease. We tested the hypothesis that impaired processing of the IAPP precursor proIAPP contributes to amyloid formation and cell death. GH3(More)
Type 2 diabetes is associated with progressive beta-cell failure manifest as a decline in insulin secretion and increasing hyperglycemia. A growing body of evidence suggests that beta-cell failure in type 2 diabetes correlates with the formation of pancreatic islet amyloid deposits, indicating that islet amyloid may have an important role in beta-cell loss(More)
Islet amyloid polypeptide (IAPP) (amylin), the major component of islet amyloid, is produced by cleavage at the COOH- and NH(2)-termini of its precursor, proIAPP, likely by the beta-cell prohormone convertases (PC) 1/3 and PC2. Mice lacking PC2 can process proIAPP at its COOH- but not its NH(2)-terminal cleavage site, suggesting that PC1/3 is capable of(More)
Islet amyloid is a pathologic characteristic of the pancreas in type 2 diabetes comprised mainly of the beta-cell peptide islet amyloid polypeptide (IAPP; amylin). We used a pulse-chase approach to investigate the kinetics of processing and secretion of the IAPP precursor, proIAPP, in beta cells. By only 20 min after synthesis, a COOH-terminally processed(More)
Islet amyloid polypeptide (IAPP; amylin) is a peptide hormone that is cosecreted with insulin from beta-cells. Impaired processing of proIAPP, the IAPP precursor, has been implicated in islet amyloid formation in type 2 diabetes. We previously showed that proIAPP is processed to IAPP by the prohormone convertases PC1/3 and PC2 at its carboxyl (COOH) and(More)
Islet transplantation provides a promising approach for treatment of type 1 diabetes mellitus. Amyloid formation and loss of extracellular matrix are two nonimmune factors contributing to death of isolated human islets. We tested the effects of two types of three-dimensional scaffolds, collagen matrix (CM) and fibroblast-populated collagen matrix (FPCM), on(More)
AIMS/HYPOTHESIS Type 2 diabetes is characterised by decreased beta cell mass and islet amyloid formation. Islet amyloid formed by aggregation of human islet amyloid polypeptide (hIAPP) is associated with beta cell apoptosis. We used human and transgenic mouse islets in culture to examine whether deletion of caspase-3 protects islets from apoptosis induced(More)
Vanadium treatment normalizes plasma glucose levels in streptozotocin-diabetic rats in vivo, but the mechanism(s) involved are still unclear. Here, we tested the hypothesis that the in vivo effects of vanadium are mediated by changes in gluconeogenesis. Diabetic rats were treated with bis(maltolato)oxovanadium(IV) (BMOV) in the drinking water (0.75-1 mg/ml,(More)
OBJECTIVE During hypoinsulinemia, when cardiac glucose utilization is impaired, the heart rapidly adapts to using more fatty acids. One means by which this is achieved is through lipoprotein lipase (LPL). We determined the mechanisms by which the heart regulates LPL after acute hypoinsulinemia. RESEARCH DESIGN AND METHODS We used two different doses of(More)