Lucy M. Warren

  • Citations Per Year
Learn More
PURPOSE This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using(More)
Studies using simulated calcifications can be performed to measure the effect of different imaging factors on calcification detection in digital mammography. The simulated calcifications must be inserted into clinical images with realistic contrast and sharpness. MoCa is a program which modifies the contrast and sharpness of simulated calcification clusters(More)
OBJECTIVE. The objective of our study was to investigate the effect of image processing on the detection of cancers in digital mammography images. MATERIALS AND METHODS. Two hundred seventy pairs of breast images (both breasts, one view) were collected from eight systems using Hologic amorphous selenium detectors: 80 image pairs showed breasts containing(More)
To compare the performance of different types of detectors in breast cancer detection. A mammography image set containing subtle malignant non-calcification lesions, biopsy-proven benign lesions, simulated malignant calcification clusters and normals was acquired using amorphous-selenium (a-Se) detectors. The images were adapted to simulate four types of(More)
Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further(More)
Planar 2D X-ray mammography is the most common screening technique used for breast cancer detection. Digital breast tomosynthesis (DBT) is a new and emerging technology that overcomes some of the limitations of conventional planar imaging. However, it is important to understand the impact of these two modalities on cancer detection rates and patient recall.(More)
In order to achieve optimal diagnostic performance in breast tomosynthesis (BT) imaging, the parameters of the imaging chain should be evaluated. For the purpose of such evaluations, a simulation procedure based on the Monte Carlo code system Penelope and the geometry of a Siemens BT system has been developed to generate BT projection images. In this work,(More)