Learn More
BACKGROUND Gene activation is thought to occur through a series of temporally defined regulatory steps. However, this process has not been completely evaluated in single living mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS To investigate the timing and coordination of gene activation events, we tracked the recruitment of GCN5 (histone(More)
Enteroaggregative Escherichia coli (EAEC) are etiologic agents of diarrhea. The EAEC category is heterogeneous, but most in-depth experimentation has focused on prototypical strain, 042. We hypothesized that 60A, another EAEC strain, might posses virulence or fitness genes that 042 does not have. Through subtractive hybridization we identified 60A-specific(More)
In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the(More)
Unlike the core histones, which are incorporated into nucleosomes concomitant with DNA replication, histone H3.3 is synthesized throughout the cell cycle and utilized for replication-independent (RI) chromatin assembly. The RI incorporation of H3.3 into nucleosomes is highly conserved and occurs at both euchromatin and heterochromatin. However, neither the(More)
  • 1