Learn More
AIMS/HYPOTHESIS Mutations in BSCL2/seipin cause Berardinelli-Seip congenital lipodystrophy (BSCL), a rare recessive disorder characterised by near absence of adipose tissue and severe insulin resistance. We aimed to determine how seipin deficiency alters glucose and lipid homeostasis and whether thiazolidinediones can rescue the phenotype. METHODS Bscl2(More)
Mutations in BSCL2/seipin cause Berardinelli-Seip congenital lipodystrophy (BSCL), a rare recessive disorder characterized by near absence of adipose tissue and severe insulin resistance. Since the discovery of the gene in 2001, several cellular studies intended to unravel the biological function of seipin and revealed that seipin-deficiency alters(More)
Fibroblast growth factor 21 (FGF21) was shown to improve metabolic homeostasis, at least partly by controlling white adipocyte profile and adiponectin secretion. Here, we studied its effect on adipocyte dysfunction in the context of Berardinelli-Seip congenital lipodystrophy (BSCL) linked to seipin deficiency. Bscl2-/- mice displayed a progressive adipose(More)
Loss-of-function mutations in BSCL2 are responsible for Berardinelli-Seip congenital lipodystrophy, a rare disorder characterized by near absence of adipose tissue associated with insulin resistance. Seipin-deficient (Bscl2(-/-)) mice display an almost total loss of white adipose tissue (WAT) with residual brown adipose tissue (BAT). Previous cellular(More)
Type 2 diabetes mellitus (T2DM) is a well-recognized independent risk factor for heart failure. T2DM is associated with altered cardiac energy metabolism, leading to ectopic lipid accumulation and glucose overload, the exact contribution of these two parameters remaining unclear. To provide new insight into the mechanism driving the development of diabetic(More)
  • 1