Learn More
OBJECTIVE To allow exchange of clinical practice guidelines among institutions and computer-based applications. DESIGN The GuideLine Interchange Format (GLIF) specification consists of GLIF model and the GLIF syntax. The GLIF model is an object-oriented representation that consists of a set of classes for guideline entities, attributes for those classes,(More)
The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE). The expression patterns of 1,051 genes that showed(More)
The Guideline Interchange Format (GLIF) is a language for structured representation of guidelines. It was developed to facilitate sharing clinical guidelines. GLIF version 2 enabled modeling a guideline as a flowchart of structured steps, representing clinical actions and decisions. However, the attributes of structured constructs were defined as text(More)
MOTIVATION [corrected] The existence of several technologies for measuring gene expression makes the question of cross-technology agreement of measurements an important issue. Cross-platform utilization of data from different technologies has the potential to reduce the need to duplicate experiments but requires corresponding measurements to be comparable.(More)
Receiver operating characteristic (ROC) curves are frequently used in biomedical informatics research to evaluate classification and prediction models for decision support, diagnosis, and prognosis. ROC analysis investigates the accuracy of a model's ability to separate positive from negative cases (such as predicting the presence or absence of disease),(More)
Logistic regression and artificial neural networks are the models of choice in many medical data classification tasks. In this review, we summarize the differences and similarities of these models from a technical point of view, and compare them with other machine learning algorithms. We provide considerations useful for critically assessing the quality of(More)
Over the last decade, gene expression microarrays have had a profound impact on biomedical research. The diversity of platforms and analytical methods available to researchers have made the comparison of data from multiple platforms challenging. In this study, we describe a framework for comparisons across platforms and laboratories. We have attempted to(More)
We present a greedy algorithm for supervised discretization using a metric defined on the space of partitions of a set of objects. This proposed technique is useful for preparing the data for classifiers that require nominal attributes. Experimental work on decision trees and naïve Bayes classifiers confirm the efficacy of the proposed algorithm.
In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard(More)
This paper evaluates the variable selection performed by several machine-learning techniques on a myocardial infarction data set. The focus of this work is to determine which of 43 input variables are considered relevant for prediction of myocardial infarction. The algorithms investigated were logistic regression (with stepwise, forward, and backward(More)