Lucienne Legault-Démare

Learn More
In vertebrates, the glycolytic enzyme enolase (EC is present as homodimers and heterodimers formed from three distinct subunits of identical molecular weight, alpha, beta, and gamma. We report the cloning and sequencing of a cDNA encoding the beta subunit of murine muscle-specific enolase. The corresponding amino acid sequence shows greater than(More)
Nonneuronal alpha alpha- and neuron-specific alpha gamma- and gamma gamma-enolase activities were measured in the mouse brain during development. The corresponding mRNA sequences were quantified directly by hybridization with cDNA probes. The variations in alpha- and gamma-monomer levels inferred from the enzymatic activities were very similar to those of(More)
A very active in vitro protein-synthesizing system has been developed from Bacillus subtilis. High activity in the extracts is dependent upon precautions taken to reduce proteolytic activity. Endogenous, exogenous natural and synthetic messenger ribonucleic acids (RNAs) are translated by the system. The activity of the B. subtilis system has been compared(More)
The development of embryonic rat brain in cell cultures was studied by an immunocytochemical method based on the detection of 14-3-2 protein (neuron-specific enolase or NSE), a neuron-specific protein. This protein was already present in undifferentiated neurons (less than 5 days in culture), being dispersed throughout the cytoplasm, though seemingly(More)
The relative amounts of the different enolase isozymes present in neuroblastoma cells change during differentiation. When differentiation is induced by low serum in the presence of DMSO (dimethyl sulfoxide), there is a 50% decrease in the concentration of enolase activity associated with the form alpha alpha, and an increase in the activity associated with(More)
Extracts of sporulating cells were found to be defective in vitro translation of phage SP01 ribonucleic acid (RNA) and vegetative Bacillus subtilis RNA. The activity of washed ribosomes from sporulating cells was very similar to that of washed ribosomes from vegetative cells in translating polyuridylic acid, SP01 RNA, and vegetative RNA. The S-150 fraction(More)
The in vitro B. subtilis protein synthesizing system is very restricted in its ability to translate E. coli phage messenger RNA's, specifically phage T4 RNA, even though it actively translates its proper mRNA species. In contrast, the E. coli system translates with similar efficiency mRNA from either source. The initiation factors from the two systems are(More)
Polysomes prepared from frozen rat brain powder were fractionated by centrifugation in a sucrose gradient. Individual fractions were used to program a reticulocyte lysate in a run-off reaction. The products of cell-free synthesis were assayed for the brain-specific enolase (14.3.2 protein) and S100 protein by immunoprecipitation with specific antisera and(More)
We have compared the rodent developmental pattern of the 14-3-2 antigen estimated by a microcomplement fixation technique with that of the cerebral enolases. Chromatographic separation of enolase isozymes on microcolumns demonstrates that the embryonic neuron specific enolase is firstly and mostly represented by the ?? isozyme. The most important increase(More)