Learn More
Severe fetal acidemia during labour can result in life-lasting neurological deficits, but the timely detection of this condition is often not possible. This is because the positive predictive value (PPV) of fetal heart rate (FHR) monitoring, the mainstay of fetal health surveillance during labour, to detect concerning fetal acidemia is around 50%. In fetal(More)
OBJECTIVE Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. METHODS Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal(More)
Fetal monitoring during labour currently fails to accurately detect acidemia. We developed a method to assess the multidimensional properties of fetal heart rate variability (fHRV) from trans-abdominal fetal electrocardiogram (fECG) during labour. We aimed to assess this novel bioinformatics approach for correlation between fHRV and neonatal pH or base(More)
OBJECTIVE Repetitive umbilical cord occlusions (UCOs) in ovine fetus leading to severe acidemia result in adaptive shut-down of electrocortical activity [electrocorticogram (ECoG)] as well as systemic and brain inflammation. We hypothesized that the fetuses with earlier ECoG shut-down as a neuroprotective mechanism in response to repetitive UCOs will show(More)
BACKGROUND To evaluate the impact of sampling rate on the predictive capability of continuous fetal heart rate (FHR) variability (fHRV) monitoring for detecting fetal acidemia during labor, we tested the performance of the root mean square of successive differences (RMSSD) in R-R intervals from the ECG when acquired with the sampling rate of 4 Hz currently(More)
Fetal heart rate (FHR) sampling rate used on the bedside is equal or less than 4 Hz. Current FHR analysis methods fail to detect incipient fetal acidemia. In a fetal sheep model of human labour we showed that FHR sampling rates near 1000 Hz are needed to detect fetal acidemia. Trans-abdominal fetal ECG (t-a fECG) sampling FHR at 900 Hz combined with a(More)
In fetal sheep, the electrocorticogram (ECOG) recorded directly from the cortex during repetitive heart rate (FHR) decelerations induced by umbilical cord occlusions (UCO) predictably correlates with worsening hypoxic-acidemia. In human fetal monitoring during labor, the equivalent electroencephalogram (EEG) can be recorded noninvasively from the scalp. We(More)
Fetal inflammation is associated with increased risk for postnatal organ injuries. No means of early detection exist. We hypothesized that systemic fetal inflammation leads to distinct alterations of fetal heart rate variability (fHRV). We tested this hypothesis deploying a novel series of approaches from complex signals bioinformatics. In chronically(More)
  • 1