Learn More
The opportunities of confocal microscopy applied to morphometry of microscopical structures are presented and demonstrated on stereological methods based on evaluation of optical sections within a thick slice and using computer-generated virtual test probes. Such methods, allowing arbitrary orientation of the thick slice, can be used for estimating volume,(More)
We postulated that, in rat extensor digitorum longus muscle (EDL), the length of capillaries per fibre surface area (Lcap/Sfib) and per fibre volume (Lcap/Vfib) could reflect fibre-type transformations accompanied by changes in oxidative metabolic profile and selective fibre-type atrophy. We excised rat EDL muscle 2 weeks after the sciatic nerve was cut(More)
The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2(More)
A set of methods leading to volume reconstruction of biological specimens larger than the field of view of a confocal laser scanning microscope (CLSM) is presented. Large tissue specimens are cut into thin physical slices and volume data sets are captured from all studied physical slices by CLSM. Overlapping spatial tiles of the same physical slice are(More)
The anatomical structure of mesophyll tissue in the leaf is tightly connected with many physiological processes in plants. One of the most important mesophyll parameters related to photosynthesis is the internal leaf surface area, i.e. the surface area of mesophyll cell walls exposed to intercellular spaces. An efficient design-based stereological method(More)
A confocal laser scanning microscope (CLSM) captures images from a biological specimen in different depths and provides one with a stack of precisely registered fluorescent images. However, image intensities suffer from light loss distortions showing contrast and brightness degradation of images with depth. This effect causes problems in subsequent analysis(More)
Quantitative measurements of geometric forms or counting of objects in microscopic specimens is an essential tool in studies of microstructure. Confocal stereology represents a contemporary approach to the evaluation of microscopic structures by using a combination of stereological methods and confocal microscopy. 3-D images acquired by confocal microscopy(More)
Much like other microorganisms, wild yeasts preferentially form surface-associated communities, such as biofilms and colonies, that are well protected against hostile environments and, when growing as pathogens, against the host immune system. However, the molecular mechanisms underlying the spatiotemporal development and environmental resistance of(More)
A confocal laser scanning microscope (CLSM) enables us to capture images from a biological specimen in different depths and obtain a series of precisely registered fluorescent images. However, images captured from deep layers of the specimen may be darker than images from the topmost layers because of light loss distortions. This effect causes difficulties(More)
Recent design-based stereological methods that can be applied to thick sections cut in an arbitrary direction are presented and their implementation for measuring mesophyll anatomical characteristics is introduced. These methods use software-randomized virtual 3D probes, such as disector and fakir test probes, in stacks of optical sections acquired using(More)