Lucie Beaudoin

Learn More
Progression to destructive insulitis in nonobese diabetic (NOD) mice is linked to the failure of regulatory cells, possibly involving T helper type 2 (Th2) cells. Natural killer (NK) T cells might be involved in diabetes, given their deficiency in NOD mice and the prevention of diabetes by adoptive transfer of ␣ / ␤ double-negative thymocytes. Here, we(More)
Unlike conventional major histocompatibility complex-restricted T cells, Valpha14-Jalpha18 NKT cell lineage precursors engage in cognate interactions with CD 1 d-expressing bone marrow-derived cells that are both necessary and sufficient for their thymic selection and differentiation, but the nature and sequence of these interactions remain partially(More)
Type 1 diabetes (T1D) is an autoimmune disease resulting from T cell-mediated destruction of insulin-producing β cells, and viral infections can prevent the onset of disease. Invariant natural killer T cells (iNKT cells) exert a regulatory role in T1D by inhibiting autoimmune T cell responses. As iNKT cell-plasmacytoid dendritic cell (pDC) cooperation(More)
The pathogenesis of immunoglobulin A (IgA) nephropathy (IgAN), the most prevalent form of glomerulonephritis worldwide, involves circulating macromolecular IgA1 complexes. However , the molecular mechanism(s) of the disease remain poorly understood. We report here the presence of circulating soluble Fc ␣ R (CD89)-IgA complexes in patients with IgAN. Soluble(More)
X-linked adrenoleukodystrophy (X-ALD) is a severe neurological disease characterized by progressive demyelination within the CNS, adrenal insufficiency, and is associated with an accumulation of saturated very long chain fatty acids in plasma and tissues of patients. iNKT cells, a distinct lineage of T cells recognizing glycolipid antigens through CD1d(More)
Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells. Even though extensive scientific research has yielded important insights into the immune mechanisms involved in pancreatic β-cell destruction, little is known about the events that trigger the autoimmune process. Recent epidemiological and(More)
Invariant NKT cells are innate lymphocytes with a broad tissue distribution. Here we demonstrate that iNKT cells reside in the central nervous system (CNS) in the absence of inflammation. Their presence in the CNS dramatically augments following inoculation of C57Bl/6 mice with the neurotropic Theiler's murine encephalomyelitis virus (TMEV). At the peak of(More)
Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the(More)
  • 1