#### Filter Results:

#### Publication Year

1994

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Bruno Giacomazzo, Luciano Rezzolla
- 2007

The accurate modelling of astrophysical scenarios involving compact objects and magnetic fields, such as the collapse of rotating magnetized stars to black holes or the phenomenology of γ-ray bursts, requires the solution of the Einstein equations together with those of general-relativistic magnetohydrodynamics. We present a new numerical code developed to… (More)

We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal… (More)

Determining the final spin of a black-hole (BH) binary is a question of key importance in astrophysics. Modelling this quantity in general is made difficult by the fact that it depends on the 7-dimensional space of parameters characterizing the two initial black holes. However, in special cases, when symmetries can be exploited, the description can become… (More)

Many astrophysical processes involving magnetic fields and quasi-stationary processes are well described when assuming the fluid as a perfect conductor. For these systems, the ideal-magnetohydrodynamics (MHD) description captures the dynamics effectively and a number of well-tested techniques exist for its numerical solution. Yet, there are several… (More)

- A M Abrahams, L Rezzolla, M E Rupright, A Anderson, P Anninos, T W Baumgarte +18 others
- 1998

We present a method for extracting gravitational radiation from a three-dimensional numerical relativity simulation and, using the extracted data, to provide outer boundary conditions. The method treats dynamical gravitational variables as nonspherical perturbations of Schwarzschild geometry. We discuss a code which implements this method and present… (More)

- Luciano Rezzolla
- 2011

Short gamma-ray Bursts (SGRBs) are among the most luminous explosions in the universe, releasing in less than one second the energy emitted by our Galaxy over one year. Despite decades of observations, the nature of their " central engine " remains unknown. Considering a binary of magnetized neutron stars and solving the Einstein equations, we show that… (More)

- L Rezzolla, Yoshida, T J Maccarone, O Zanotti
- 2008

Observations of X-ray emissions from binary systems have long since been considered important tools to test General Relativity in strong-field regimes. The high frequency quasi-periodic oscillations (HFQPOs) observed in binaries containing a black hole candidate, in particular, have been proposed as a means to measure more directly the black hole properties… (More)

- Ilia Musco, John C Miller, Luciano Rezzolla
- 2008

Results are presented from general relativistic numerical computations of primordial black-hole formation during the radiation-dominated era of the universe. Growing-mode perturbations are specified within the linear regime and their subsequent evolution is followed as they become nonlinear. We use a spherically symmetric Lagrangian code and study both… (More)

- Cecilia B, M H Chirenti, Luciano Rezzolla
- 2007

Gravastars have been recently proposed as potential alternatives to explain the astrophysical phenomenology traditionally associated to black holes, raising the question of whether the two objects can be distinguished at all. Leaving aside the debate about the processes that would lead to the formation of a gravastar and the astronomical evidence in their… (More)