Learn More
—Cellular systems of the fourth generation (4G) have been optimized to provide high data rates and reliable coverage to mobile users. Cellular systems of the next generation will face more diverse application requirements: the demand for higher data rates exceeds 4G capabilities; battery-driven communication sensors need ultra-low power consumption; control(More)
Bigger, faster, higher? The appetite for broad-band has clearly fueled the development of mobile cellular networks. On the other hand, the successful deployment of killer applications in the past 20 years has had a major impact on the markets as well: First and foremost, the need for unteth-ered telephony and, with it, wireless real-time voice communication(More)
—Future wireless communication systems are demanding a more flexible physical layer. GFDM is a block filtered multicarrier modulation scheme proposed to add multiple degrees of freedom and cover other waveforms in a single framework. In this paper, GFDM modulation and demodulation will be presented as a frequency-domain circular convolution, allowing for a(More)
—The soft transition between generations of mobile communication systems is a desirable feature for telecommu-nication operators and device manufacturers. Looking to the past, clock compatibility between WCDMA and LTE allowed manufacturers to build inexpensive multi-standard devices. In this paper it is shown that GFDM, a candidate waveform for the 5G PHY(More)
—This paper presents the combination of generalized frequency division multiplexing (GFDM) with the Walsh-Hadamard transform (WHT) to achieve a scheme that is robust against frequency-selective channels (FSC). The proposed scheme is suitable for low-latency scenarios foreseen for 5G networks, specially for Tactile Internet. The paper also presents(More)
—The next generation of wireless networks will face different challenges from new scenarios. The main contribution of this paper is to show that Generalized Frequency Division Multiplexing (GFDM), as a baseline of flexible circular filtered multicarrier systems, can be used as a framework to virtualize the PHY service for the upper layers of 5G networks.(More)