Learn More
The resiliency of a network is its ability to remain effectively functioning also when any of its nodes or links fails. However, to reduce operational and setup costs, a network should be small in size, and this conflicts with the requirement of being resilient. In this paper we address this trade-off for the prominent case of the broadcasting routing(More)
A <i>network creation game</i> simulates a decentralized and noncooperative construction of a communication network. Informally, there are <i>n</i> players sitting on the network nodes, which attempt to establish a reciprocal communication by activating, thereby incurring a certain cost, any of their incident links. The goal of each player is to have all(More)
Let G be an unweighted n-node undirected graph. A β-additive spanner of G is a spanning subgraph H of G such that distances in H are stretched at most by an additive term β w.r.t. the corresponding distances in G. A natural research goal related with spanners is that of designing sparse spanners with low stretch. In this paper, we focus on fault-tolerant(More)
In a Stackelberg pricing game a leader aims to set prices on a subset of a given collection of items, such as to maximize her revenue from a follower purchasing a feasible subset of the items. We focus on the case of computationally bounded followers who cannot optimize exactly over the range of all feasible subsets, but apply some publicly known algorithm(More)
Let G be an n-node and m-edge positively real-weighted undirected graph. For any given integer f ≥ 1, we study the problem of designing a sparse f-edge-fault-tolerant (f-EFT) σ-approximate single-source shortest-path tree (σ-ASPT), namely a subgraph of G having as few edges as possible and which, following the failure of a set F of at most f edges in G,(More)
Let be given a graph G = (V, E) whose edge set is partitioned into a set R of red edges and a set B of blue edges, and assume that red edges are weighted and form a spanning tree of G. Then, the Stackelberg Minimum Spanning Tree (StackMST) problem is that of pricing (i.e., weighting) the blue edges in such a way that the total weight of the blue edges(More)
We consider the following class of polygon-constrained motion planning problems: Given a set of k centrally controlled mobile agents (say pebbles) initially sitting on the vertices of an n-vertex simple polygon P , we study how to plan their vertex-to-vertex motion in order to reach with a minimum (either maximum or total) movement (either in terms of(More)
The twenty-first century has seen the rise of a new type of video games targeted at a mass audience of &#x201C;casual&#x201D; gamers. Many of these games require the player to swap items in order to form matches of three and are collectively known as tile-matching match-three games. Among these, the most influential one is arguably Bejeweled in which the(More)