Learn More
The aluminosilicate mineral imogolite is composed of single-walled nanotubes with stoichiometry of (HO)(3)Al(2)O(3)SiOH and occurs naturally in soils of volcanic origin. In the present work we study the stability and the electronic and mechanical properties of zigzag and armchair imogolite nanotubes using the density-functional tight-binding method. The(More)
Imogolite is a single-walled aluminosilicate nanotube (NT) found in nature that can be easily synthesized, as well as its analogue aluminogermanate NT. Based on geometrical assumptions and pKa values, species such as H3PO4, H3PO3, H3AsO3, H3AsO4 could also be candidates to form imogolite-like structures. In the present work, we provide insights about the(More)
The effect of pH on cell growth and retamycin production in batch bioreactor cultures of Streptomyces olindensis ICB20 was investigated. In fermentations pH-controlled over the range 6.0-8.0, the highest retamycin production was achieved at pH 7.0, and the maximum concentration of retamycin, about 1.36 A (absorbance) units, was about 43, 58 and 232% higher(More)
Fe(III) hydrolysis in aqueous solution has been investigated using density-functional methods (DFT). All possible structures arising from different tautomers and multiplicities have been calculated. The solvation energy has been estimated using the UAHF-PCM method. The hydrolysis free energies have been estimated and compared with the available experimental(More)
This paper presents elements that form the structure of a network of data using secure stable and mature technologies that meet the requirement of having code free. The principle would be conflicting code open Tuesday where he wants to keep maximum control over the data but is already evidence that open source does not hide the famous backdoor possible in(More)
The mechanism of neutral hydrolysis of ester has long been explored by theoretical studies. However, reliable theoretical calculations show that the usual bifunctional catalysis mechanism reported by different authors cannot explain the experimental kinetics. An important advance was recently reported by Gunaydin and Houk, suggesting that ions are involved(More)
Structural and thermodynamic properties of the mononuclear Al/citrate complexes have been theoretically investigated aiming to understand the coordination mechanism at an atomic level. GGA-DFT/PCM calculations have been performed for the different conformations and tautomers arising from the Al(3+) and citric acid (H3L) interaction in aqueous solution. The(More)
Synthetic 3-alkylpyridine marine alkaloid (3-APA) analogues have shown good antimalarial activity against Plasmodium falciparum. However, despite their structural originality, their molecular target was unknown. Herein, we report a proposal for the antimalarial mechanism of action of 3-APA analogues through interference with the process of hemozoin (Hz)(More)
The purpose of this paper was to study at the molecular level the enantioseparation mechanism of 4-hydroxypropranolol (4-OH-Prop) with carboxymethyl-β-cyclodextrin (CM-β-CD) using a sequential methodology which included molecular dynamics simulations (MD), and Parametric Model 3 (PM3) semiempirical and density functional theory (DFT) calculations. A(More)
A theoretical (1)H NMR spectroscopy and thermodynamic analysis of the host-guest inclusion process involving the norfloxacin (NFX) into β-cyclodextrin (β-CD) was carried out. DFT structure and stabilization energies were obtained in both gas and aqueous phases. We could establish that the complex formation is enthalpy driven, and the hydrogen bonds(More)
  • 1