Luciana De Franceschi

Learn More
OBJECTIVE Autologous chondrocyte implantation (ACI) has been successfully used for the treatment of osteochondral lesions of the talus. One of the main problems of this surgical strategy is related to the harvesting of the cartilage slice from a healthy knee. The aim of this study was to examine the capacity of chondrocytes harvested from a detached(More)
BACKGROUND There are only a few studies concerning the cellular, biochemical, and genetic processes that occur during the remodeling of graft tissue after autologous chondrocyte transplantation. The purpose of the present study was to quantify the expression of genes encoding extracellular matrix proteins and regulatory factors that are essential for cell(More)
Recent success in tissue engineering by restoring cartilage defects by transplanting autologous chondrocyte cells on a three-dimensional scaffold has prompted the improvement of this therapeutic strategy. Here we describe a new approach investigating the healing of rabbit cartilage by means of autologous chondrocytes seeded on a biomaterial made of an(More)
OBJECTIVE To investigate the gene expression profile and the histological aspects of articular cartilage of patients affected by Morquio syndrome, a lysosomal storage disease characterized by the accumulation of glycosaminoglycans within the cells which result in abnormal formation and growth of the skeletal system. METHOD Articular cartilage samples were(More)
The development of improved methods for treatment of chondral defects using autologous cells in combination with biomaterials leads to a new generation of implantable devices. Their association gives rise to a hybrid construct combining biological and material components that can be specifically committed. The comprehension of cellular and molecular(More)
The clinical need for improved human autologous chondrocyte transplantation has motivated the use of different biomaterials, which are aimed at fixing the cells in the defect area and permit their proliferation and differentiation. The maintenance of the original phenotype by isolated chondrocytes grown in vitro is an important requisite for their use in(More)
Promising new therapies based on tissue engineering have been recently developed for cartilage repair. The association of biomaterials with autologous chondrocytes expanded in vitro can represent a useful tool to regenerate this tissue. The scaffolds utilised in such therapeutical applications should provide a pre-formed three-dimensional shape, prevent(More)
We previously established a line of immortalized normal human articular chondrocytes, lbpva55, expressing the E6 and E7 transforming genes of the human papilloma virus type 16. With this study we investigated the phenotypic modulation ability of this cell line, cultured in different conditions, with the aim of validating its use for studies on cartilage(More)
Association of biomaterials with autologous cells can provide a new generation of implantable devices for cartilage and bone repair. Such scaffolds should provide a performed three-dimensional shape, prevent cells from floating out of the defect, have sufficient mechanical strength, facilitate uniform spread of cells, and stimulate the phenotype of(More)
Hyaluronic-acid-based biomaterials used for cartilage repair allow the expression of specific extracellular matrix molecules by human chondrocytes grown onto them. We investigated whether these biomaterials could also create an environment in which the cells downregulate the expression of some catabolic factors. Chondrocytes were isolated from human(More)