Luciana B. Cosme

Learn More
In this paper the fault detection problem is solved using an alternative methodology based on a fuzzy/Bayesian strategy combining a Bayesian network and the fuzzy set theory. The new important issue in this proposed methodology is to address uncertainties in the input of the Bayesian Network. This contribution is possible since the fuzzy set theory is used(More)
This paper presents a DC motor fault diagnosis system based on Bayesian networks. This was done by the design of a new electromechanical test bed allowing the collection of functioning data from a real world industrial Direct current (DC) Motor. The data collection will help in the construction of Bayesian networks models. These data are collected from(More)
This paper proposes an improved fault prognostic approach based on a modified particle filter with a built-in differential evolution characteristic. The main methodological contribution of this study is to handle the problem of sample impoverishment faced by particle filters when only a few particles are resampled. This is done by incorporating modified(More)
  • 1