Lucian Soane

Learn More
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic(More)
Proliferation of aortic smooth muscle cells contributes to atherogenesis and neointima formation. Sublytic activation of complement, particularly C5b-9, induces cell cycle progression in aortic smooth muscle cells. RGC-32 is a novel protein that may promote cell cycle progression in response to complement activation. We cloned human RGC-32 cDNA from a human(More)
Mammalian Bcl-x(L) protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x(L) also localized to inner mitochondrial cristae. Two-photon microscopy of(More)
Oxidative stress is an important molecular mechanism of astrocyte injury and death following ischemia/reperfusion and may be an effective target of intervention. One therapeutic strategy for detoxifying the many different reactive oxygen and nitrogen species that are produced under these conditions is induction of the Phase II gene response by the use of(More)
Mitochondria play a central role in cerebral energy metabolism, intracellular calcium homeostasis and reactive oxygen species generation and detoxification. Following traumatic brain injury (TBI), the degree of mitochondrial injury or dysfunction can be an important determinant of cell survival or death. Literature would suggest that brain mitochondria from(More)
Sublytic complement activation on oligodendrocytes (OLG) down-regulates expression of myelin genes and induces cell cycle in culture. Differential display (DD) was used to search for new genes whose expression is altered in response to complement and that may be involved in cell cycle activation. DD bands showing either increased or decreased mRNA(More)
Altered mitochondrial energy metabolism contributes to the pathophysiology of acute brain injury caused by ischemia, trauma, and neurotoxins and by chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Although much evidence supports that the electron transport chain dysfunction in these metabolic abnormalities has both genetic(More)
Bcl-2 and other closely related members of the Bcl-2 family of proteins inhibit the death of neurons and many other cells in response to a wide variety of pathogenic stimuli. Bcl-2 inhibition of apoptosis is mediated by its binding to pro-apoptotic proteins, e.g., Bax and tBid, inhibition of their oligomerization, and thus inhibition of mitochondrial outer(More)
Apoptosis of oligodendrocytes is induced by serum growth factor deprivation. We showed that oligodendrocytes and progenitor cells respond to serum withdrawal by a rapid decline of Bcl-2 mRNA expression and caspase-3-dependent apoptotic death. Sublytic assembly of membrane-inserted terminal complement complexes consisting of C5b, C6, C7, C8, and C9 proteins(More)