Lucian Livadaru

Learn More
We formulate the proper statistical mechanics to describe the stretching of a macromolecule under a force provided by the cantilever of an Atomic Force Microscope. In the limit of a soft cantilever, the generalized ensemble of the coupled molecule-cantilever system reduces to the Gibbs ensemble for an isolated molecule subject to a constant force in which(More)
We propose a self-consistent molecular theory of conformational properties of flexible polymers in melts and solutions. The method employs the polymer reference interaction site model for the intermolecular correlations and the Green function technique for the intramolecular correlations. We demonstrate this method on n-alkane molecules in different(More)
We propose a self-consistent molecular theory of conformational properties of flexible polymers in solution. It is applied to the collapse of a hydrophobic polymer chain in water, and can be readily generalized to any polymer-solvent system (e.g., copolymers with high complexity). We stress the potential of this method for a variety of problems, such as(More)
It is demonstrated that the silicon atom dangling bond (DB) state serves as a quantum dot. Coulomb repulsion causes DBs separated by less, similar2 nm to exhibit reduced localized charge, which enables electron tunnel coupling of DBs. Scanning tunneling microscopy measurements and theoretical modeling reveal that fabrication geometry of multi-DB assemblies(More)
Here we report the direct observation of single electron charging of a single atomic dangling bond (DB) on the H-Si(100)-2×1 surface. The tip of a scanning tunneling microscope is placed adjacent to the DB to serve as a single-electron sensitive charge detector. Three distinct charge states of the dangling bond--positive, neutral, and negative--are(More)
We envision and theoretically investigate a novel behavior of a functionalized nanoparticle designed to translocate through a liquidlike membrane. We develop a statistical-mechanical approach to such a system. We predict a new mechanism for the opening of a circular energy-dominated pore on the membrane by a nanoparticle functionalized with a peptide(More)
We study both experimentally and theoretically the electronic behavior of dangling bonds (DBs) at a hydrogen terminated Si(100)-2×1 surface. Dangling bonds behave as quantum dots and, depending on their separation, can be tunnel coupled with each other or completely isolated. On n-type highly doped silicon, the latter have a net charge of -1e, while coupled(More)
While it is known that the Si-(7×7) is a conducting surface, measured conductivity values differ by 7 orders of magnitude. Here we report a combined STM and transport method capable of surface conductivity measurement of step-free or single-step containing surface regions and having minimal interaction with the sample, and by which we quantitatively(More)