#### Filter Results:

#### Publication Year

2011

2015

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- L. Ivan, H. De Sterck, S. A. Northrup, C. P. T. Groth
- 2011

An accurate, effcient and scalable cubed-sphere grid framework is described for simulation of magnetohydrodynamic (MHD) space-physics flows in domains between two concentric spheres. The unique feature of the proposed formulation compared to existing cubed-sphere codes lies in the design of a cubed-sphere framework that is based on a genuine and consistent… (More)

- Lucian Ivan, Clinton P. T. Groth
- J. Comput. Physics
- 2014

A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of the Navier-Stokes equations on body-fitted multi-block mesh. The spatial dis-cretization of the inviscid (hyperbolic) term is based on a hybrid solution reconstruction procedure… (More)

- A. Susanto, Lucian Ivan, Hans De Sterck, Clinton P. T. Groth
- J. Comput. Physics
- 2013

A high-order accurate finite-volume scheme for the compressible ideal magnetohydrodynamics (MHD) equations is proposed. The high-order MHD scheme is based on a central essentially non-oscillatory (CENO) method combined with the generalized Lagrange multiplier divergence cleaning method for MHD. The CENO method uses k-exact multidimensional reconstruction… (More)

- L. Ivan, A. Susanto, H. De Sterck
- 2012

A high-order central essentially non-oscillatory (CENO) finite-volume scheme is developed for the compressible ideal magnetohydrodynamics (MHD) equations solved on three-dimensional (3D) cubed-sphere grids. The proposed formulation is an extension to 3D geometries of a recent high-order MHD CENO scheme developed on two-dimensional (2D) grids. The main… (More)

- Lucian Ivan, Hans De Sterck, Scott A. Northrup, Clinton P. T. Groth
- J. Comput. Physics
- 2013

A scalable parallel and block-adaptive cubed-sphere grid simulation framework is described for solution of hyper-bolic conservation laws in domains between two concentric spheres. In particular, the Euler and ideal magnetohy-drodynamics (MHD) equations are considered. Compared to existing cubed-sphere grid algorithms, a novelty of the proposed approach… (More)

- Lucian Ivan, Hans De Stercka, Scott A. Northrupb, Clinton P. T. Grothb
- 2012

An accurate, efficient and scalable parallel, cubed-sphere grid numerical framework is described for solution of hyperbolic conservation laws in domains between two concentric spheres. The particular conservation laws considered in this work are the well-known Euler and ideal magnetohydrodynamics (MHD) equations. Our main contribution compared to existing… (More)

- Lucian Ivan, Hans De Sterck, A. Susanto, Clinton P. T. Groth
- J. Comput. Physics
- 2015

A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral… (More)

- ‹
- 1
- ›