Learn More
Myogenesis is controlled by an elaborate system of extrinsic and intrinsic regulatory mechanisms in all development stages. The aim of this review is to provide an overview of the different stages of myogenesis and muscle differentiation in mammals, starting from somitogenesis and analysis of the different portions that constitute the mature somite.(More)
Despite Wilms tumor 1 (WT1) protein was originally considered as a specific immunomarker of Wilms tumor, with the increasing use of immunohistochemistry, there is evidence that other tumors may share WT1 protein expression. This review focuses on the immunohistochemical profile of WT1 protein in the most common malignant tumors of children and adolescents.(More)
Partial monosomy 13q, a chromosomal alteration originally reported in spindle cell lipoma, has also been documented in a few cases of mammary myofibroblastoma. Subsequently, a monoallelic loss of RB1 and FOXO1, located on 13q14, was identified in some cases of cellular angiofibroma, a benign stromal tumor of the lower female genital tract. This cytogenetic(More)
Developmental expression of Wilms' tumor gene (WT1) and protein is crucial for cell proliferation, apoptosis, differentiation and cytoskeletal architecture regulation. Recently, a potential role of WT1 has been suggested in the development of neural tissue and in neurodegenerative disorders. We have investigated immunohistochemically the developmentally(More)
The Wilms' tumor (WT1) gene and its protein product are known to exhibit a dynamic expression profile during development and in the adult organism. Apart from a nuclear expression observed in the urogenital system, its precise localization in other developing human tissues is still largely unknown. Accordingly, the aim of this study was to investigate(More)
There is increasing evidence that Wilms' tumor transcription factor-1 (WT1) is expressed in the cytoplasm of neoplastic cells from different benign and malignant tumors. Only a few studies on WT1 cytoplasmic immunolocalization are available in pediatric tumors. The aim of the present study was to investigate immunohistochemically the expression and(More)
There is increasing evidence that WT1 protein expression is found not only at nuclear, but also at cytoplasmic, level in several developing and neoplastic tissues. In order to better understand the possible role of WT1 protein in human skeletal myogenesis and oncogenesis of rhabdomyosarcoma, we assessed immunohistochemically its comparative expression in a(More)
Several genes playing crucial roles in human development often reproduce a key role also during the onset and progression of malignant tumors. WT1, a transcription factor expressed with a dynamic pattern during human development, has either oncogenic or suppressor tumor properties. A detailed analysis of the immunohistochemical profile of WT1 protein in(More)
Wilms' tumor protein (WT1) has been immunohistochemically detected in the cytoplasm of some developing, adult normal and neoplastic human tissues, suggesting its complex regulator activity in transcriptional/translational processes. Among neoplastic tissues, WT1 has been documented in the cytoplasm of benign and malignant vascular tumors and in(More)
Myofibroblastoma (MFB) of the breast is a relatively rare, benign stromal tumor arising in the breast of both males and females. Several morphological variants have been recognized in the last two decades, including infiltrating, cellular, fibrous/collagenized, epithelioid/deciduoid-like cell, lipomatous and myxoid variants. Myxoid MFB is an extremely rare(More)