Learn More
Fluorescence in situ hybridization allows the enumeration of chromosomal abnormalities in interphase cell nuclei. This process is called dot counting. To estimate the distribution of chromosomes per cell, a large number of cells have to be analyzed, especially when the frequency of aberrant cells is low. Automation of dot counting is required because manual(More)
One of the essential ways in which nonlinear image restoration algorithms differ from linear, convolution-type image restoration filters is their capability to restrict the restoration result to nonnegative intensities. The iterative constrained Tikhonov-Miller (ICTM) algorithm, for example, incorporates the nonnegativity constraint by clipping all negative(More)
Accurate modeling of image formation in cryo-electron microscopy is an important requirement for quantitative image interpretation and optimization of the data acquisition strategy. Here we present a forward model that accounts for the specimen's scattering properties, microscope optics, and detector response. The specimen interaction potential is(More)
In this paper, we compare the performance of three iterative methods for image restoration: the Richardson–Lucy algorithm, the iterative constrained Tikhonov–Miller algorithm (ICTM) and the Carrington algorithm. Both the ICTM and the Carrington algorithm are based on an additive Gaussian noise model, but differ in the way they incorporate the non-negativity(More)
PURPOSE Several phenomena in tablets indicate that an inhomogeneous pore distribution is formed during the compaction process. Examples are lamination and the capping of corners. In order to gain an understanding of the relation between structure and compact properties, analyzing the structure in a location dependent manner would be extremely useful. Our(More)
An image processing algorithm is presented to reconstruct optical pathlength distributions from images of nonabsorbing weak phase objects, obtained by a differential interference contrast (DIC) microscope, equipped with a charge-coupled device camera. The method is demonstrated on DIC images of transparent latex spheres and unstained bovine spermatozoa. The(More)
Advances in light microscopy have enabled the visualization of DNA in the interphase nucleus with more detail than is visible with conventional light microscopy. The nuclear architecture is assumed to be different in cancer cells compared to normal cells. In this paper we have studied, for the first time, the organization of nuclear DNA and that of DNA-free(More)
Digital image processing and analysis provide a powerful tool for describing optical systems. In this paper we show that conventional formulas for the depth-of-focus (∆z) of a high numerical aperture, diffraction-limited optical system are incorrect. Using standard diffraction wave theory we have (rediscovered d a formula for ∆z and then tested that formula(More)
Studies of protein dynamics by 4D (3D + time) confocal microscopy in vivo are hampered by global cell motion. The time between the acquisitions of the 3D images is in the order of minutes. Therefore, it is not to be expected that the cell as a whole remains fixed in the water basin on the stage. This superimposes a motion on the protein dynamics that has to(More)
Porosity and pore structure are important characteristics of tablets, since they influence mechanical strength and many other properties. This paper proposes an alternative method for the characterization of pore structure based on image analysis of SEM micrographs. SEM images were made of sodium chloride tablets made with three different particle sizes.(More)