Lucas Drumetz

Learn More
Spectral variability is a phenomenon due, to a grand extend, to variations in the illumination and atmospheric conditions within a hyperspectral image, causing the spectral signature of a material to vary within a image. Data spectral fluctuation due to spectral variability compromises the linear mixing model (LMM) sum-to-one constraint, and is an important(More)
The Linear Mixing Model is often used to perform Hyperspectral Unmixing because of its simplicity, but it assumes that a single spectral signature can be completely representative of an endmember. However, in many scenarios, this assumption does not hold since many factors such as illumination conditions and intrinsic variability of the endmembers have(More)
Endmember variability has been identified as one of the main limitations of the usual Linear Mixing Model, conventionally used to perform spectral unmixing of hyperspectral data. The topic is currently receiving a lot of attention from the community, and many new algorithms have recently been developed to model this variability and take it into account. In(More)
The linear mixing model (LMM) is a widely used methodology for the spectral unmixing (SU) of hyperspectral data. In this model, hyperspectral data is formed as a linear combination of spectral signatures corresponding to macroscopically pure materials (endmembers), weighted by their fractional abundances. Some of the drawbacks of the LMM are the presence of(More)
We apply social ℓ-norms for the first time to the problem of hyperspectral unmixing while modeling spectral variability. These norms are built with inter-group penalties which are combined in a global intra-group penalization that can enforce selection of entire endmember bundles; this results in the selection of a few representative materials even(More)
Hyperspectral image unmixing is a source separation problem whose goal is to identify the signatures of the materials present in the imaged scene (called endmembers), and to estimate their proportions (called abundances) in each pixel. Usually, the contributions of each material are assumed to be perfectly represented by a single spectral signature and to(More)
Spectral unmixing (SU) is one of the most important and studied topics in hyperspectral image analysis. By means of spectral unmixing it is possible to decompose a hyperspectral image in its spectral components, the so-called endmembers, and their respective fractional spatial distributions, so-called abundance maps. The Canonical Polyadic (CP) tensor(More)
Segmentation and classification are prolific research topics in the image processing community, which have been more and more used in the context of analysis of cementitious materials, on images acquired with Scanning Electron Microscopes (SEM) . Indeed, there is a need to be able to detect and to quantify the materials present in a cement paste in order to(More)