Learn More
A widely used generic assay for 2-oxoglutarate-dependent oxygenases relies upon monitoring the release of 14CO2 from labeled [1-14C]-2-oxoglutarate. We report an alternative assay in which depletion of 2-oxoglutarate is monitored by its postincubation derivatization with o-phenylenediamine to form a product amenable to fluorescence analysis. The utility of(More)
Fluorogenic hybridization probes that allow RNA imaging provide information as to how the synthesis and transport of particular RNA molecules is orchestrated in living cells. In this study, we explored the peptide nucleic acid (PNA)-based FIT-probes in the simultaneous imaging of two different viral mRNA molecules expressed during the replication cycle of(More)
Forced intercalation probes (FIT-probes) are nucleic acid probes, in which an intercalator cyanine dye such as thiazole orange (TO) serves as a replacement of a canonical nucleobase. These probes signal hybridization by showing strong increases of fluorescence. TO in FIT-probes responds to adjacent base mismatches by attenuation of fluorescence intensities(More)
Oligonucleotide hybridization probes that fluoresce upon binding to complementary nucleic acid targets allow the real-time detection of DNA or RNA in homogeneous solution. The most commonly used probes rely on the distance-dependent interaction between a fluorophore and another label. Such dual-labeled oligonucleotides signal the change of the global(More)
Probe molecules that enable the detection of specific DNA sequences are used in diagnostic and basic research. Most methods rely on the specificity of hybridization reactions, which complicates the detection of single base mutations at low temperature. Significant efforts have been devoted to the development of oligonucleotides that allow discrimination of(More)
Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in(More)
The challenge in DNA-based asymmetric catalysis is to perform a reaction in the vicinity of the helix by incorporating a small-molecule catalyst anchored to the DNA in a covalent, dative, or non-covalent yet stable fashion in order to ensure high levels of enantio-discrimination. Here, we report the first generation of a DNA-based catalyst bound to a(More)
The recent development of biohybrid catalytic systems has allowed synthetic chemists to reach high levels of selectivity on a wide variety of valuable synthetic transformations. In this context, DNA-based catalysts have emerged as particularly appealing tools. Interestingly, while long RNA sequences (ribozymes) are known to catalyse specific biochemical(More)