Learn More
Many motion segmentation algorithms based on manifold clustering rely on a accurate rank estimation of the trajectory matrix and on a meaningful affinity measure between the estimated manifolds. While it is known that rank estimation is a difficult task, we also point out the problems that can be induced by an affinity measure that neglects the distribution(More)
Automatic surgical gesture segmentation and recognition can provide useful feedback for surgical training in robotic surgery. Most prior work in this field relies on the robot's kinematic data. Although recent work [1,2] shows that the robot's video data can be equally effective for surgical gesture recognition, the segmentation of the video into gestures(More)
We present a new motion segmentation algorithm: the Enhanced Local Subspace Affinity (ELSA). Unlike Local Subspace Affinity, ELSA is robust in a variety of conditions even without manual tuning of its parameters. This result is achieved thanks to two improvements. The first is a new model selection technique for the estimation of the trajectory matrix rank.(More)
Much of the existing work on automatic classification of gestures and skill in robotic surgery is based on kinematic and dynamic cues, such as time to completion, speed, forces, torque, or robot trajectories. In this paper we show that in a typical surgical training setup, video data can be equally discriminative. To that end, we propose and evaluate three(More)
Much of the existing work on automatic classification of gestures and skill in robotic surgery is based on dynamic cues (e.g., time to completion, speed, forces, torque) or kinematic data (e.g., robot trajectories and velocities). While videos could be equally or more discriminative (e.g., videos contain semantic information not present in kinematic data),(More)
Representing objects using elements from a visual dictionary is widely used in object detection and categorization. Prior work on dictionary learning has shown improvements in the accuracy of object detection and categorization by learning discriminative dictionaries. However none of these dictionaries are learnt for joint object categoriza-tion and(More)
This paper presents a novel approach to simultaneously compute the motion segmentation and the 3D reconstruction of a set of 2D points extracted from an image sequence. Starting from an initial segmentation, our method proposes an iterative procedure that corrects the misclassified points while reconstructing the 3D scene, which is composed of objects that(More)
We present a novel optimisation framework for the estimation of the multi-body motion segmentation and 3D reconstruction of a set of point trajectories in the presence of missing data. The proposed solution not only assigns the trajectories to the correct motion but it also solves for the 3D location of multi-body shape and it fills the missing entries in(More)