Learn More
We report on numerical and experimental studies showing the influence of arc curvature on the confinement loss in hypocycloid-core Kagome hollow-core photonic crystal fiber. The results prove that with such a design the optical performances are strongly driven by the contour negative curvature of the core-cladding interface. They show that the increase in(More)
An analysis of the con.nement losses in photonic crystal fibers due to the finite numbers of air holes is performed by means of the finite element method. The high flexibility of the numerical method allows us to consider fibers with regular lattices, like the triangular and the honeycomb ones, and circular holes, but also fibers with more complicated cross(More)
Microstructured optical fibers (MOFs) with small hole-to-hole spacing and large airholes are designed to compensate the anomalous dispersion and the dispersion slope of single-mode fibers. The geometrical parameters that characterize triangular MOFs are chosen to optimize the fiber length and the compensation over a wide wavelength range. A proper design of(More)
In this paper scaling laws governing loss in hollow core tube lattice fibers are numerically investigated and discussed. Moreover, by starting from the analysis of the obtained numerical results, empirical formulas for the estimation of the minimum values of confinement loss, absorption loss, and surface scattering loss inside the transmission band are(More)
In this work a broadband UHF antenna with high inductive input impedance for radiofrequency energy harvesting is presented. It consists of a small feeding loop and a biconical radiating dipole. A prototype has been fabricated on a FR4 substrate and tested. Experimental results show a -3dB power transmission bandwidth of about 135MHz (840MHz-975MHz).
We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing(More)
We report on numerical and experimental studies on the influence of cladding ring-number on the confinement and bend loss in hypocycloid-shaped Kagome hollow core photonic crystal fiber. The results show that beyond the second ring, the ring number has a minor effect on confinement loss whereas the bend loss is strongly reduced with the ring-number(More)
Confinement loss of inhibited coupling fibers with a cladding composed of a lattice of tubes of various shapes is theoretically and numerically investigated. Both solid core and hollow core are taken into account. It is shown that in case of polygonal shaped tubes, confinement loss is affected by extra loss due to Fano resonances between core modes and(More)