#### Filter Results:

#### Publication Year

2015

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Organism

Learn More

We show that discrete synaptic weights can be efficiently used for learning in large scale neural systems, and lead to unanticipated computational performance. We focus on the representative case of learning random patterns with binary synapses in single layer networks. The standard statistical analysis shows that this problem is exponentially dominated by… (More)

Learning in neural networks poses peculiar challenges when using discretized rather then continuous synaptic states. The choice of discrete synapses is motivated by biological reasoning and experiments, and possibly by hardware implementation considerations as well. In this paper we extend a previous large deviations analysis which unveiled the existence of… (More)

In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost-function. It is not well understood how learning occurs in these systems, in particular how they avoid getting trapped in configurations… (More)

- Carlo Baldassi, Christian Borgs, Jennifer T Chayes, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti +1 other
- Proceedings of the National Academy of Sciences…
- 2016

In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost function. It is not well understood how learning occurs in these systems, in particular how they avoid getting trapped in configurations… (More)

- ‹
- 1
- ›