Luca Mariani

Learn More
Differentiation of naive T lymphocytes into type I T helper (Th1) cells requires interferon-gamma and interleukin-12. It is puzzling that interferon-gamma induces the Th1 transcription factor T-bet, whereas interleukin-12 mediates Th1 cell lineage differentiation. We use mathematical modeling to analyze the expression kinetics of T-bet, interferon-gamma,(More)
Coordinated programs of gene expression during cell differentiation can be controlled by master transcription factors. The differentiation of helper T (Th) lymphocytes during the immune response has been shown to occur along alternative pathways designated as Th1 and Th2. Induction of the Th1 and Th2 pathways is associated with the conversely regulated(More)
Understanding how regulatory sequences interact in the context of chromosomal architecture is a central challenge in biology. Chromosome conformation capture revealed that mammalian chromosomes possess a rich hierarchy of structural layers, from multi-megabase compartments to sub-megabase topologically associating domains (TADs) and sub-TAD contact domains.(More)
Although cell-to-cell variability has been recognized as an unavoidable consequence of stochasticity in gene expression, it may also serve a functional role for tuning physiological responses within a cell population. In the immune system, remarkably large variability in the expression of cytokine genes has been observed in homogeneous populations of(More)
Flow cytometry is a fast and sensitive method that allows monitoring of different cellular parameters on large samples of a population. Protein distributions give relevant information on growth dynamics, since they are related to the age distribution and depend on the law of growth of the population and the law of protein accumulation during the cell cycle.(More)
Models able to describe the events of cellular growth and division and the dynamics of cell populations are useful for the understanding of functional control mechanisms and for the theoretical support for automated analysis of flow cytometric data and of cell volume distributions. This paper reports on models that we have developed with this aim for(More)
A molecular model for the control of cell size has been developed. It is based on two molecules, one (I) acts as an inhibitor of the entrance into S phase, and it is synthetised just after cell separation in a fixed amount per nucleus. The other (A) is an activator of the S phase, and it is synthetised at a ratio proportional to the overall protein(More)
Several experimental data on continuous cultures of hybridoma cells show that monoclonal antibody productivity is a decreasing function of dilution rate. It has been suggested that this unusual behavior may be due to the arrest of a fraction of cycling cells at a critical point of Phase G(1). Although this hypothesis has been recently investigated by using(More)
Ribosome and protein synthesis, DNA replication and cell division in Escherichia coli cells are described by a mathematical model that integrates previous descriptions in quantitative terms and proposes a new formalization to relate ribosome net synthesis to cell growth. The model assumes a cell size control of DNA replication and therefore is structurally(More)
Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles(More)