Learn More
Candida albicans is both a member of the healthy human microbiome and a major pathogen in immunocompromised individuals. Infections are typically treated with azole inhibitors of ergosterol biosynthesis often leading to drug resistance. Studies in clinical isolates have implicated multiple mechanisms in resistance, but have focused on large-scale(More)
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to(More)
Almost all humans are colonized with Candida albicans However, in immunocompromised individuals, this benign commensal organism becomes a serious, life-threatening pathogen. Here, we describe and analyze the regulatory networks that modulate innate responses in the host niches. We identified Zcf15 and Zcf29, two Zinc Cluster transcription Factors (ZCF) that(More)
We demonstrate a method using Caenorhabditis elegans as a model host to study microbial interaction. Microbes are introduced via the diet making the intestine the primary location for disease. The nematode intestine structurally and functionally mimics mammalian intestines and is transparent making it amenable to microscopic study of colonization. Here we(More)
Candida albicans is one of the most common fungal pathogens associated with opportunistic and nosocomial infections. Infection is often initiated through formation of a biofilm, which is also drug resistant. A recently discovered small molecule called filastatin shows some promise as an inhibitor of biofilm formation and adhesion to polystyrene. A(More)
  • 1