Luca Guandalini

Learn More
The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete(More)
BACKGROUND AND PURPOSE Selective hyperpolarization activated, cyclic nucleotide-gated channel (HCN) blockers represent an important therapeutic goal due to the wide distribution and multiple functions of these proteins, representing the molecular correlate of f- and h-current (I(f) or I(h) ). Recently, new compounds able to block differentially the(More)
Histone deacetylase inhibitors (HDACi) induce tumour cell cycle arrest and/or apoptosis, and some of them are currently used in cancer therapy. Recently, we described a series of powerful HDACi characterized by a 1,4-benzodiazepine (BDZ) ring hybridized with a linear alkyl chain bearing a hydroxamate function as Zn(++)--chelating group. Here, we explored(More)
Histone deacetylase inhibitors (HDACi) are agents capable of inducing growth arrest and apoptosis in different tumour cell types. Previously, we reported a series of novel HDACi obtained by hybridizing SAHA or oxamflatin with 1,4-benzodiazepines. Some of these hybrids proved effective against haematological and solid cancer cells and, above all, compound(More)
A series of homodimers of the well-known cholinergic agonist carbachol have been synthesized, showing the two agonist units symmetrically connected through a methylene chain of variable length. The new compounds have been tested on the five cloned muscarinic receptors (hM1-5) expressed in CHO cells by means of equilibrium binding studies, showing an(More)
Chemical manipulation of the nicotinic agonist DMPP, endowed with modest activity on the central receptors, definitely improved its affinity and pharmacokinetic properties. Although their pharmacophore is somehow different from that of classical nicotinic ligands, some DMPP derivatives show low nanomolar affinity for the central nicotinic receptors.(More)
  • 1