Luca De Stefano

Learn More
We describe an innovative experimental and computational approach to control the expression of a protein in a population of yeast cells. We designed a simple control algorithm to automatically regulate the administration of inducer molecules to the cells by comparing the actual protein expression level in the cell population with the desired expression(More)
Porous silicon samples have been reduced in nanometric particles by a well known industrial mechanical process, the ball grinding in a planetary mill; the process has been extended to crystalline silicon for comparison purposes. The silicon nanoparticles have been studied by X-ray diffraction, infrared spectroscopy, gas porosimetry and transmission electron(More)
We report on our preliminary results in the realization and characterization of a porous silicon (PSi) resonant mirror (RM) for optical biosensing. We have numerically and experimentally studied the coupling between the electromagnetic field, totally reflected at the base of a high refractive index prism, and the optical modes of a PSi waveguide. This(More)
Some natural structures show three-dimensional morphologies on the micro- and nano-scale, characterized by levels of symmetry and complexity well far beyond those fabricated by best technologies available. This is the case of diatoms, unicellular microalgae, whose protoplasm is enclosed in a nanoporous microshell, made of hydrogenated amorphous silica,(More)
A procedure for fabrication of photomasks on photographic films with minimum feature achievable of about 20 μm, which are particularly suitable for the fast prototyping of microfluidic devices, has been improved. We used a commercial photographic enlarger in reverse mode obtaining 10:1 reduction factor with error less than 1%. Masks have been characterized(More)
Native diatoms made of amorphous silica are first converted into silicon structures via magnesiothermic process, preserving the original shape: electron force microscopy analysis performed on silicon-converted diatoms demonstrates their semiconductor behavior. Wet surface chemical treatments are then performed in order to enhance the photoluminescence(More)
Porous biosilica from diatom frustules is well known for its peculiar optical and mechanical properties. In this work, gold-coated diatom frustules are used as low-cost, ready available, functional support for surface-enhanced Raman scattering. Due to the morphology of the nanostructured surface and the smoothness of gold deposition via an electroless(More)
In this work, two procedures for fabrication of polymeric microneedles based on direct photolithography, without any etching or molding process, are reported. Polyethylene glycol (average molecular weight 250 Da), casted into a silicone vessel and exposed to ultraviolet light (365 nm) through a mask, cross-links when added by a commercial photocatalyzer. By(More)
Rapid screening tests in medical diagnostic and environmental analysis are often based on oligonucleotide biochips. In this paper, we studied the stability of functionalized mesoporous silicon supports in the solid-phase synthesis of oligonucleotides, exploiting several chemical procedures. A 19-mer mixed sequence has been successfully synthesized on(More)