Luca De Stefano

Learn More
We describe an innovative experimental and computational approach to control the expression of a protein in a population of yeast cells. We designed a simple control algorithm to automatically regulate the administration of inducer molecules to the cells by comparing the actual protein expression level in the cell population with the desired expression(More)
Porous silicon samples have been reduced in nanometric particles by a well known industrial mechanical process, the ball grinding in a planetary mill; the process has been extended to crystalline silicon for comparison purposes. The silicon nanoparticles have been studied by X-ray diffraction, infrared spectroscopy, gas porosimetry and transmission electron(More)
A procedure for fabrication of photomasks on photographic films with minimum feature achievable of about 20 μm, which are particularly suitable for the fast prototyping of microfluidic devices, has been improved. We used a commercial photographic enlarger in reverse mode obtaining 10:1 reduction factor with error less than 1%. Masks have been characterized(More)
The recent scandal of poly implant prostheses (PIP), which were found in some cases to be made of non-medical grade silicone (as reported by the European Scientific Committee on Emerging and Newly Identified Health Risks), had a great social impact. Thousands of patients asked for implant removal with significant costs for public health care systems. We(More)
In this work, two procedures for fabrication of polymeric microneedles based on direct photolithography, without any etching or molding process, are reported. Polyethylene glycol (average molecular weight 250 Da), casted into a silicone vessel and exposed to ultraviolet light (365 nm) through a mask, cross-links when added by a commercial photocatalyzer. By(More)
Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm −1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative(More)
Finite element method analysis was applied to the characterization of the biomolecular interactions taking place in a microfluidic assisted microarray. Numerical simulations have been used for the optimization of geometrical and physical parameters of the sensing device. Different configurations have been analyzed and general considerations have been(More)