Luca Dal Negro

Learn More
Defined nanoparticle cluster arrays (NCAs) with total lateral dimensions of up to 25.4 microm x 25.4 microm have been fabricated on top of a 10 nm thin gold film using template-guided self-assembly. This approach provides precise control of the structural parameters in the arrays, allowing a systematic variation of the average number of nanoparticles in the(More)
In this paper, we introduce a novel approach for optical sensing based on the excitation of critically localized modes in two-dimensional deterministic aperiodic structures generated by a Rudin-Shapiro (RS) sequence. Based on a rigorous computational analysis, we demonstrate that RS photonic structures provide a large number of resonant modes better suited(More)
We report on the design, fabrication and measurement of ultra-thin film Silicon On Insulator (SOI) Schottky photo-detector cells with nanostructured plasmonic arrays, demonstrating broadband enhanced photocurrent generation using aperiodic golden angle spiral geometry. Both golden angle spiral and periodic arrays of various center-to-center particle spacing(More)
We report on a new form of III-V compound semiconductor nanostructures growing epitaxially as vertical V-shaped nanomembranes on Si(001) and study their light-scattering properties. Precise position control of the InAs nanostructures in regular arrays is demonstrated by bottom-up synthesis using molecular beam epitaxy in nanoscale apertures on a SiO(2)(More)
Deterministic Aperiodic (DA) arrays of gold (Au) nanoparticles are proposed as a novel approach for the engineering of reproducible surface enhanced Raman scattering (SERS) substrates. A set of DA and periodic arrays of cylindrical and triangular Au nanoparticles with diameters ranging between 50-110 nm and inter-particle separations between 25-100 nm were(More)
The accurate and reproducible control of intense electromagnetic fields localized on the nanoscale is essential for the engineering of optical sensors based on the surface-enhanced Raman scattering (SERS) effect. In this paper, using rigorous generalized Mie theory (GMT) calculations and a combined top-down/bottom-up nanofabrication approach, we design and(More)
The propagation of light in nonperiodic quasicrystals is studied by ultrashort pulse interferometry. Samples consist of multilayer dielectric structures of the Fibonacci type and are realized from porous silicon. We observe mode beating and strong pulse stretching in the light transport through these systems, and a strongly suppressed group velocity for(More)
In this paper, we combine experimental dark-field scattering spectroscopy and accurate electrodynamics calculations to investigate the scattering properties of two-dimensional plasmonic lattices based on the concept of aperiodic order. In particular, by discussing visible light scattering from periodic, Fibonacci, Thue-Morse and Rudin-Shapiro lattices(More)
We theoretically investigate the spectral and localization properties of two-dimensional (2D) deterministic aperiodic (DA) arrays of photonic nanopillars characterized by singular continuous (Thue-Morse sequence) and absolutely continuous (Rudin-Shapiro sequence) Fourier spectra. A rigorous and efficient numerical technique based on the 2D Generalized(More)