Learn More
Several (Z)-5-arylidene-2,4-thiazolidinediones were synthesized and tested as aldose reductase inhibitors (ARIs). The most active of the N-unsubstituted derivatives (2) exerted the same inhibitory activity of Sorbinil. The introduction of an acetic side chain on N-3 of the thiazolidinedione moiety led to a marked increase in lending inhibitory activity,(More)
UNLABELLED The pharmacological treatment of neurological disorders is often complicated by the inability of drugs to pass the blood-brain barrier. Recently we discovered that polymeric nanoparticles (NPs) made of poly(D,L-lactide-co-glycolide), surface-decorated with the peptide Gly-L-Phe-D-Thr-Gly-L-Phe-L-Leu-L-Ser(O-beta-D-glucose)-CONH2 are able to(More)
The clinical treatment of multifactorial pathologies (e.g. cancer, Alzheimer's disease, psychiatric disorders), is still a major challenge. Many researches have been published dealing with the design of multiple ligands, able to act at the same time towards several targets relevant for a given pathology. In the present review, the clinical results about(More)
Aldose reductase (ALR2) is an enzyme involved in the development of long-term diabetic complications. In the search for aldose reductase inhibitors less acidic than carboxylic acids, phenolic compounds related to benzopyran-4-one and chalcone are particularly interesting because they possess good inhibitory properties. In order to investigate the(More)
Despite recent advances both in the chemistry and molecular pharmacology of antidiabetic drugs, diabetes still remains a life-threatening disease, which tends to spread all over the world. The clinical profile of diabetic subjects is often worsened by the presence of several long-term complications, namely neuropathy, nephropathy, retinopathy, and cataract.(More)
Bovine lens aldose reductase (ALR2) is inactivated by copper ion [Cu(II)] through an oxygen-independent oxidative modification process. A stoichiometry of 2 equiv of Cu(II)/enzyme mol is required to induce inactivation. While metal chelators such as EDTA or o-phenantroline prevent but do not reverse the ALR2 inactivation, DTT allows the enzyme activity to(More)
Tecoma stans is a plant traditionally used in Mexico for the control of diabetes. Amongst the alkaloids isolated from the plant harvested in Egypt, Tecomine was shown to be one of the compounds responsible for the hypoglycemic action. Given the interest in substances able to treat type II diabetes, we isolated the main alkaloids present in the plant growing(More)
Injectable nanoparticulate drug carriers (Np) able to cross the blood-brain barrier (BBB) have important potential applications for the treatment of diseases that affect the central nervous system (CNS). With the aim to create a system able to address Np to the CNS, we synthesized conjugates between a biodegradable copolymer, poly(D,L-lactide-co-glycolide)(More)
Polymeric nanoparticles (Np) represent one of the most innovative non-invasive approaches for the drug delivery to the central nervous system (CNS). It is known that the ability of the Np to cross the Blood Brain Barrier (BBB), thus allowing the drugs to exert their pharmacological activity in the central nervous district, is linked to their surface(More)
Protein conformational change is an important consideration in ligand-docking screens, but it is difficult to predict. A simple way to account for protein flexibility is to soften the criterion for steric fit between ligand and receptor. A more comprehensive but more expensive method would be to sample multiple receptor conformations explicitly. Here, these(More)