Luca Banszerus

Learn More
We report on ballistic transport over more than 28 μm in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm(2)/(Vs). The ballistic nature of charge transport is probed(More)
Graphene research has prospered impressively in the past few years, and promising applications such as high-frequency transistors, magnetic field sensors, and flexible optoelectronics are just waiting for a scalable and cost-efficient fabrication technology to produce high-mobility graphene. Although significant progress has been made in chemical vapor(More)
Confocal Raman spectroscopy has emerged as a major, versatile workhorse for the non-invasive characterization of graphene. Although it is successfully used to determine the number of layers, the quality of edges, and the effects of strain, doping and disorder, the nature of the experimentally observed broadening of the most prominent Raman 2D line has(More)
We show spin lifetimes of 12.6 ns and spin diffusion lengths as long as 30.5 μm in single layer graphene nonlocal spin transport devices at room temperature. This is accomplished by the fabrication of Co/MgO-electrodes on a Si/SiO2 substrate and the subsequent dry transfer of a graphene-hBN-stack on top of this electrode structure where a large hBN flake is(More)
  • 1