Learn More
This paper focuses on the problem of providing efficient run-time support to multimedia applications in a real-time system, where different types of tasks (characterized by different criticality) can coexist. Whereas critical real-time tasks (hard tasks) are guaranteed based on worst-case execution times and minimum interarrival times, multimedia tasks are(More)
ÐAn increasing number of real-time applications, related to multimedia and adaptive control systems, require greater flexibility than classical real-time theory usually permits. In this paper, we present a novel scheduling framework in which tasks are treated as springs with given elastic coefficients to better conform to the actual load conditions. Under(More)
When executing soft real-time tasks in a shared processor, it is important to properly allocate the computational resources such that the quality of service requirements of each task are satisfied. In this paper we propose Adaptive Reservations, based on applying a feedback scheme to a reservation based scheduler. After providing a precise mathematical(More)
Reservation based (RB) scheduling is a class of scheduling algorithms that is well-suited for a large class of soft real-time applications. They are based on a “bandwidth” abstraction, meaning that a task is given the illusion of executing on a dedicated slower processor. In this context, a crucial design issue is deciding the bandwidth that each task(More)
In this paper, we present the BandWidth Inheritance (BWI) protocol, a new strategy for scheduling real-time tasks in dynamic systems, which extends the resource reservation framework to systems where tasks can interact through shared resources. The proposed protocol provides temporal isolation between independent groups of tasks and enables a schedulability(More)