Luc de Lapeyre de Bellaire

Learn More
Landscape genetics, which combines population genetics, landscape ecology and spatial statistics, has emerged recently as a new discipline that can be used to assess how landscape features or environmental variables can influence gene flow and spatial genetic variation. We applied this approach to the invasive plant pathogenic fungus Mycosphaerella(More)
Understanding how geographical and environmental features affect genetic variation at both the population and individual levels is crucial in biology, especially in the case of pathogens. However, distinguishing between these factors and the effects of historical range expansion on spatial genetic structure remains challenging. In the present study, we(More)
Dispersal is a key parameter of adaptation, invasion and persistence. Yet standard population genetics inference methods hardly distinguish it from drift and many species cannot be studied by direct mark-recapture methods. Here, we introduce a method using rates of change in cline shapes for neutral markers to estimate contemporary dispersal. We apply it to(More)
Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis.(More)
Agroecosystem plant diversification can enhance pest biological regulation and is a promising alternative to pesticide application. However, the costs of competition for resources between plants may exceed the benefits gained by pest regulation. To disentangle the interactions between pest regulation and competition, we developed a generic process-based(More)
  • 1