Learn More
We demonstrate the performance of our interest point detector/descriptor scheme SURF – Speeded Up Robust Features – in an application that finds correspondences to a reference image in realtime. The user takes a reference image with a handheld video camera and then moves the camera around the object. The system identifies interest points in every newly(More)
This article presents a novel scaleand rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features). SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image(More)
The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted(More)
The paper gives a snapshot of the state of the art in affine covariant region detectors, and compares their performance on a set of test images under varying imaging conditions. Six types of detectors are included: detectors based on affine normalization around Harris  (Mikolajczyk and  Schmid, 2002; Schaffalitzky and  Zisserman, 2002) and Hessian points (More)
The Pascal Visual Object Classes (VOC) challenge consists of two components: (i) a publicly available dataset of images together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. There are five challenges: classification, detection, segmentation, action classification, and person layout. In this(More)
The goal of this challenge is to recognize objects from a number of visual object classes in images of realistic scenes. It is fundamentally a supervised learning learning problem in that a training set of labelled images is provided. The object classes are: motorbikes, bicycles, people and cars. Twelve participants entered the challenge. A full description(More)
Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super-resolution methods while making no compromise on quality.(More)
In this paper we want to start the discussion on whether image based 3D modelling techniques can possibly be used to replace LIDAR systems for outdoor 3D data acquisition. Two main issues have to be addressed in this context: (i) camera calibration (internal and external) and (ii) dense multi-view stereo. To investigate both, we have acquired test data from(More)
Over the years, several spatio-temporal interest point detectors have been proposed. While some detectors can only extract a sparse set of scaleinvariant features, others allow for the detection of a larger amount of features at user-defined scales. This paper presents for the first time spatio-temporal interest points that are at the same time(More)
We address the problem of image upscaling in the form of single image super-resolution based on a dictionary of lowand highresolution exemplars. Two recently proposed methods, Anchored Neighborhood Regression (ANR) and Simple Functions (SF), provide state-ofthe-art quality performance. Moreover, ANR is among the fastest known super-resolution methods. ANR(More)