Learn More
H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in(More)
A role for variant histone H2A.Z in gene expression is now well established but little is known about the mechanisms by which it operates. Using a combination of ChIP-chip, knockdown and expression profiling experiments, we show that upon gene induction, human H2A.Z associates with gene promoters and helps in recruiting the transcriptional machinery.(More)
UNLABELLED MtbRegList is a database dedicated to the analysis of gene expression and regulation data in Mycobacterium tuberculosis. It is designed to contain predicted and characterized regulatory DNA motifs cross-referenced with corresponding transcription factor(s), and experimentally identified transcription start sites. MtbRegList can also handle(More)
We examine transcriptional activation and chromatin remodeling at the PHO5 promoter in yeast by fusion proteins that are thought to act by recruiting the RNA polymerase II holoenzyme to DNA in the absence of a classic activating region. These hybrid proteins (e.g., Gal11+Pho4 or Gal4(58-97)+Pho4 in the presence of a GAL11P allele) efficiently activated(More)
Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERa) receptors. More specifically , ERa represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that(More)
Efficiency and specificity of PCR amplification is dependent on several parameters, such as amplicon length, as well as hybridization specificity and melting temperature of primer oligonucleotides. Primer design is thus of critical importance for the success of PCR experiments, but can be a time-consuming and repetitive task, for example when large genomic(More)
The p53 protein is crucial for adapting programs of gene expression in response to stress. Recently, we revealed that this occurs partly through the formation of stress-specific p53 binding patterns. However, the mechanisms that generate these binding patterns remain largely unknown. It is not established whether the selective binding of p53 is achieved(More)
BACKGROUND In bacteria, sigma factors and other transcriptional regulatory proteins recognize DNA patterns upstream of their target genes and interact with RNA polymerase to control transcription. As a consequence of evolution, DNA sequences recognized by transcription factors are thought to be enriched in intergenic regions (IRs) and depleted from coding(More)
BACKGROUND Nucleosomes are nucleoproteic complexes, formed of eight histone molecules and DNA, and they are responsible for the compaction of the eukaryotic genome. Their presence on DNA influences many cellular processes, such as transcription, DNA replication, and DNA repair. The evolutionarily conserved histone variant H2A.Z alters nucleosome stability(More)